MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hblem Unicode version

Theorem hblem 2508
Description: Change the free variable of a hypothesis builder. Lemma for nfcrii 2533. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
hblem.1  |-  ( y  e.  A  ->  A. x  y  e.  A )
Assertion
Ref Expression
hblem  |-  ( z  e.  A  ->  A. x  z  e.  A )
Distinct variable groups:    y, A    x, z
Allowed substitution hints:    A( x, z)

Proof of Theorem hblem
StepHypRef Expression
1 hblem.1 . . 3  |-  ( y  e.  A  ->  A. x  y  e.  A )
21hbsb 2159 . 2  |-  ( [ z  /  y ] y  e.  A  ->  A. x [ z  / 
y ] y  e.  A )
3 clelsb3 2506 . 2  |-  ( [ z  /  y ] y  e.  A  <->  z  e.  A )
43albii 1572 . 2  |-  ( A. x [ z  /  y ] y  e.  A  <->  A. x  z  e.  A
)
52, 3, 43imtr3i 257 1  |-  ( z  e.  A  ->  A. x  z  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1546   [wsb 1655    e. wcel 1721
This theorem is referenced by:  nfcrii  2533  bnj1311  29099
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-cleq 2397  df-clel 2400
  Copyright terms: Public domain W3C validator