Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbexgVD Structured version   Visualization version   Unicode version

Theorem hbexgVD 37343
Description: Virtual deduction proof of hbexg 36967. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 36967 is hbexgVD 37343 without virtual deductions and was automatically derived from hbexgVD 37343. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( ph  ->  A. x ph ) ).
2:1:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  A. x ( ph  ->  A. x ph ) ).
3:2:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( ph  ->  A. x ph ) ).
4:3:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( -.  ph  ->  A. x -.  ph ) ).
5::  |-  ( A. x A. y ( ph  ->  A. x ph )  <->  A. y  A. x ( ph  ->  A. x ph ) )
6::  |-  ( A. y A. x ( ph  ->  A. x ph )  ->  A. y  A. y A. x ( ph  ->  A. x ph ) )
7:5:  |-  ( A. y A. x A. y ( ph  ->  A. x ph )  <->  A. y A. y A. x ( ph  ->  A. x ph ) )
8:5,6,7:  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. y  A. x A. y ( ph  ->  A. x ph ) )
9:8,4:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  A. x ( -.  ph  ->  A. x -.  ph ) ).
10:9:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( -.  ph  ->  A. x -.  ph ) ).
11:10:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  ( -.  ph  ->  A. x -.  ph ) ).
12:11:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  ( A. y -.  ph  ->  A. x A. y -.  ph ) ).
13:12:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( A.  y -.  ph  ->  A. x A. y -.  ph ) ).
14::  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x  A. x A. y ( ph  ->  A. x ph ) )
15:13,14:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( A. y -.  ph  ->  A. x A. y -.  ph ) ).
16:15:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  ( -.  A. y -.  ph  ->  A. x -.  A. y -.  ph ) ).
17:16:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( -.  A. y -.  ph  ->  A. x -.  A. y -.  ph ) ).
18::  |-  ( E. y ph  <->  -.  A. y -.  ph )
19:17,18:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( E.  y ph  ->  A. x -.  A. y -.  ph ) ).
20:18:  |-  ( A. x E. y ph  <->  A. x -.  A. y -.  ph )
21:19,20:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( E.  y ph  ->  A. x E. y ph ) ).
22:8,21:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y  ( E. y ph  ->  A. x E. y ph ) ).
23:14,22:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( E. y ph  ->  A. x E. y ph ) ).
qed:23:  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x  A. y ( E. y ph  ->  A. x E. y ph ) ).
Assertion
Ref Expression
hbexgVD  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x A. y
( E. y ph  ->  A. x E. y ph ) )

Proof of Theorem hbexgVD
StepHypRef Expression
1 hba1 1989 . . 3  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x A. x A. y ( ph  ->  A. x ph ) )
2 hba1 1989 . . . . 5  |-  ( A. y A. x ( ph  ->  A. x ph )  ->  A. y A. y A. x ( ph  ->  A. x ph ) )
3 alcom 1934 . . . . 5  |-  ( A. x A. y ( ph  ->  A. x ph )  <->  A. y A. x (
ph  ->  A. x ph )
)
43albii 1702 . . . . 5  |-  ( A. y A. x A. y
( ph  ->  A. x ph )  <->  A. y A. y A. x ( ph  ->  A. x ph ) )
52, 3, 43imtr4i 274 . . . 4  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. y A. x A. y ( ph  ->  A. x ph ) )
6 idn1 36987 . . . . . . . . . . . . . . . . 17  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x A. y (
ph  ->  A. x ph ) ).
7 ax-11 1931 . . . . . . . . . . . . . . . . 17  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. y A. x
( ph  ->  A. x ph ) )
86, 7e1a 37049 . . . . . . . . . . . . . . . 16  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y A. x (
ph  ->  A. x ph ) ).
9 sp 1948 . . . . . . . . . . . . . . . 16  |-  ( A. y A. x ( ph  ->  A. x ph )  ->  A. x ( ph  ->  A. x ph )
)
108, 9e1a 37049 . . . . . . . . . . . . . . 15  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x ( ph  ->  A. x ph ) ).
11 hbntal 36964 . . . . . . . . . . . . . . 15  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x ( -.  ph  ->  A. x  -.  ph ) )
1210, 11e1a 37049 . . . . . . . . . . . . . 14  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x ( -.  ph  ->  A. x  -.  ph ) ).
135, 12gen11nv 37039 . . . . . . . . . . . . 13  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y A. x ( -.  ph  ->  A. x  -.  ph ) ).
14 ax-11 1931 . . . . . . . . . . . . 13  |-  ( A. y A. x ( -. 
ph  ->  A. x  -.  ph )  ->  A. x A. y
( -.  ph  ->  A. x  -.  ph )
)
1513, 14e1a 37049 . . . . . . . . . . . 12  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x A. y ( -.  ph  ->  A. x  -.  ph ) ).
16 sp 1948 . . . . . . . . . . . 12  |-  ( A. x A. y ( -. 
ph  ->  A. x  -.  ph )  ->  A. y ( -. 
ph  ->  A. x  -.  ph ) )
1715, 16e1a 37049 . . . . . . . . . . 11  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y ( -.  ph  ->  A. x  -.  ph ) ).
18 hbalg 36966 . . . . . . . . . . 11  |-  ( A. y ( -.  ph  ->  A. x  -.  ph )  ->  A. y ( A. y  -.  ph  ->  A. x A. y  -.  ph )
)
1917, 18e1a 37049 . . . . . . . . . 10  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y ( A. y  -.  ph  ->  A. x A. y  -.  ph ) ).
20 sp 1948 . . . . . . . . . 10  |-  ( A. y ( A. y  -.  ph  ->  A. x A. y  -.  ph )  ->  ( A. y  -. 
ph  ->  A. x A. y  -.  ph ) )
2119, 20e1a 37049 . . . . . . . . 9  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( A. y  -.  ph  ->  A. x A. y  -.  ph ) ).
221, 21gen11nv 37039 . . . . . . . 8  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x ( A. y  -.  ph  ->  A. x A. y  -.  ph ) ).
23 hbntal 36964 . . . . . . . 8  |-  ( A. x ( A. y  -.  ph  ->  A. x A. y  -.  ph )  ->  A. x ( -. 
A. y  -.  ph  ->  A. x  -.  A. y  -.  ph ) )
2422, 23e1a 37049 . . . . . . 7  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x ( -.  A. y  -.  ph  ->  A. x  -.  A. y  -.  ph ) ).
25 sp 1948 . . . . . . 7  |-  ( A. x ( -.  A. y  -.  ph  ->  A. x  -.  A. y  -.  ph )  ->  ( -.  A. y  -.  ph  ->  A. x  -.  A. y  -.  ph ) )
2624, 25e1a 37049 . . . . . 6  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( -.  A. y  -. 
ph  ->  A. x  -.  A. y  -.  ph ) ).
27 df-ex 1675 . . . . . 6  |-  ( E. y ph  <->  -.  A. y  -.  ph )
28 imbi1 329 . . . . . . 7  |-  ( ( E. y ph  <->  -.  A. y  -.  ph )  ->  (
( E. y ph  ->  A. x  -.  A. y  -.  ph )  <->  ( -.  A. y  -.  ph  ->  A. x  -.  A. y  -.  ph ) ) )
2928biimprcd 233 . . . . . 6  |-  ( ( -.  A. y  -. 
ph  ->  A. x  -.  A. y  -.  ph )  -> 
( ( E. y ph 
<->  -.  A. y  -. 
ph )  ->  ( E. y ph  ->  A. x  -.  A. y  -.  ph ) ) )
3026, 27, 29e10 37116 . . . . 5  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( E. y ph  ->  A. x  -.  A. y  -.  ph ) ).
3127albii 1702 . . . . 5  |-  ( A. x E. y ph  <->  A. x  -.  A. y  -.  ph )
32 imbi2 330 . . . . . 6  |-  ( ( A. x E. y ph 
<-> 
A. x  -.  A. y  -.  ph )  -> 
( ( E. y ph  ->  A. x E. y ph )  <->  ( E. y ph  ->  A. x  -.  A. y  -.  ph ) ) )
3332biimprcd 233 . . . . 5  |-  ( ( E. y ph  ->  A. x  -.  A. y  -.  ph )  ->  (
( A. x E. y ph  <->  A. x  -.  A. y  -.  ph )  -> 
( E. y ph  ->  A. x E. y ph ) ) )
3430, 31, 33e10 37116 . . . 4  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  ( E. y ph  ->  A. x E. y ph ) ).
355, 34gen11nv 37039 . . 3  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. y ( E. y ph  ->  A. x E. y ph ) ).
361, 35gen11nv 37039 . 2  |-  (. A. x A. y ( ph  ->  A. x ph )  ->.  A. x A. y ( E. y ph  ->  A. x E. y ph ) ).
3736in1 36984 1  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x A. y
( E. y ph  ->  A. x E. y ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189   A.wal 1453   E.wex 1674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944
This theorem depends on definitions:  df-bi 190  df-an 377  df-ex 1675  df-nf 1679  df-vd1 36983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator