Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbaltg Structured version   Unicode version

Theorem hbaltg 30014
Description: A more general and closed form of hbal 1868. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
hbaltg  |-  ( A. x ( ph  ->  A. y ps )  -> 
( A. x ph  ->  A. y A. x ps ) )

Proof of Theorem hbaltg
StepHypRef Expression
1 alim 1653 . 2  |-  ( A. x ( ph  ->  A. y ps )  -> 
( A. x ph  ->  A. x A. y ps ) )
2 ax-11 1866 . 2  |-  ( A. x A. y ps  ->  A. y A. x ps )
31, 2syl6 31 1  |-  ( A. x ( ph  ->  A. y ps )  -> 
( A. x ph  ->  A. y A. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1652  ax-11 1866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator