Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbalgVD Structured version   Unicode version

Theorem hbalgVD 34106
Description: Virtual deduction proof of hbalg 33722. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 33722 is hbalgVD 34106 without virtual deductions and was automatically derived from hbalgVD 34106. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. A. y ( ph  ->  A. x ph )  ->.  A. y ( ph  ->  A. x ph ) ).
2:1:  |-  (. A. y ( ph  ->  A. x ph )  ->.  ( A. y ph  ->  A. y A. x ph ) ).
3::  |-  ( A. y A. x ph  ->  A. x A. y ph )
4:2,3:  |-  (. A. y ( ph  ->  A. x ph )  ->.  ( A. y ph  ->  A. x A. y ph ) ).
5::  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y A. y (  ph  ->  A. x ph ) )
6:5,4:  |-  (. A. y ( ph  ->  A. x ph )  ->.  A. y ( A.  y ph  ->  A. x A. y ph ) ).
qed:6:  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y ( A. y  ph  ->  A. x A. y ph ) )
Assertion
Ref Expression
hbalgVD  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y ( A. y ph  ->  A. x A. y ph ) )

Proof of Theorem hbalgVD
StepHypRef Expression
1 hba1 1901 . . 3  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y A. y (
ph  ->  A. x ph )
)
2 idn1 33745 . . . . 5  |-  (. A. y ( ph  ->  A. x ph )  ->.  A. y
( ph  ->  A. x ph ) ).
3 alim 1637 . . . . 5  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
42, 3e1a 33807 . . . 4  |-  (. A. y ( ph  ->  A. x ph )  ->.  ( A. y ph  ->  A. y A. x ph ) ).
5 ax-11 1847 . . . 4  |-  ( A. y A. x ph  ->  A. x A. y ph )
6 imim1 76 . . . 4  |-  ( ( A. y ph  ->  A. y A. x ph )  ->  ( ( A. y A. x ph  ->  A. x A. y ph )  ->  ( A. y ph  ->  A. x A. y ph ) ) )
74, 5, 6e10 33874 . . 3  |-  (. A. y ( ph  ->  A. x ph )  ->.  ( A. y ph  ->  A. x A. y ph ) ).
81, 7gen11nv 33797 . 2  |-  (. A. y ( ph  ->  A. x ph )  ->.  A. y
( A. y ph  ->  A. x A. y ph ) ).
98in1 33742 1  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y ( A. y ph  ->  A. x A. y ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859
This theorem depends on definitions:  df-bi 185  df-ex 1618  df-vd1 33741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator