Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbalg Structured version   Unicode version

Theorem hbalg 36365
Description: Closed form of hbal 1870. Derived from hbalgVD 36749. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbalg  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y ( A. y ph  ->  A. x A. y ph ) )

Proof of Theorem hbalg
StepHypRef Expression
1 alim 1655 . . 3  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
2 ax-11 1868 . . 3  |-  ( A. y A. x ph  ->  A. x A. y ph )
31, 2syl6 33 . 2  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )
43axc4i 1928 1  |-  ( A. y ( ph  ->  A. x ph )  ->  A. y ( A. y ph  ->  A. x A. y ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880
This theorem depends on definitions:  df-bi 187  df-ex 1636  df-nf 1640
This theorem is referenced by:  hbexgVD  36750
  Copyright terms: Public domain W3C validator