MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbal Structured version   Unicode version

Theorem hbal 1870
Description: If  x is not free in  ph, it is not free in  A. y ph. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
hbal.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbal  |-  ( A. y ph  ->  A. x A. y ph )

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3  |-  ( ph  ->  A. x ph )
21alimi 1656 . 2  |-  ( A. y ph  ->  A. y A. x ph )
3 ax-11 1868 . 2  |-  ( A. y A. x ph  ->  A. x A. y ph )
42, 3syl 17 1  |-  ( A. y ph  ->  A. x A. y ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1641  ax-4 1654  ax-11 1868
This theorem is referenced by:  hbex  1976  nfal  1977  hbral  2790  wl-nfalv  31357
  Copyright terms: Public domain W3C validator