Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hba1w Structured version   Visualization version   Unicode version

Theorem hba1w 1891
 Description: Weak version of hba1 1998. See comments for ax10w 1920. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
hbn1w.1
Assertion
Ref Expression
hba1w
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem hba1w
StepHypRef Expression
1 hbn1w.1 . . . . . . 7
21cbvalvw 1886 . . . . . 6
32a1i 11 . . . . 5
43notbid 301 . . . 4
54spw 1884 . . 3
65con2i 124 . 2
74hbn1w 1890 . 2
81hbn1w 1890 . . . 4
98con1i 134 . . 3
109alimi 1692 . 2
116, 7, 103syl 18 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 189  wal 1450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator