![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hb3an | Structured version Visualization version Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
hb.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hb.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hb.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
hb3an |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hb.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | nfi 1682 |
. . 3
![]() ![]() ![]() ![]() |
3 | hb.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | nfi 1682 |
. . 3
![]() ![]() ![]() ![]() |
5 | hb.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | nfi 1682 |
. . 3
![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | nf3an 2033 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | nfri 1972 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-12 1950 |
This theorem depends on definitions: df-bi 190 df-an 378 df-3an 1009 df-ex 1672 df-nf 1676 |
This theorem is referenced by: bnj982 29662 bnj1276 29698 bnj1350 29709 |
Copyright terms: Public domain | W3C validator |