MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haust1 Structured version   Unicode version

Theorem haust1 19072
Description: A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
haust1  |-  ( J  e.  Haus  ->  J  e. 
Fre )

Proof of Theorem haust1
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2451 . . . . . . . . 9  |-  U. J  =  U. J
21hausnei 19048 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J  /\  x  =/=  y
) )  ->  E. z  e.  J  E. w  e.  J  ( x  e.  z  /\  y  e.  w  /\  (
z  i^i  w )  =  (/) ) )
3 simprr1 1036 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  x  e.  z )
4 noel 3739 . . . . . . . . . . . . 13  |-  -.  y  e.  (/)
5 simprr3 1038 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  ( z  i^i  w )  =  (/) )
65eleq2d 2521 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  ( y  e.  ( z  i^i  w
)  <->  y  e.  (/) ) )
74, 6mtbiri 303 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  -.  y  e.  ( z  i^i  w
) )
8 simprr2 1037 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  y  e.  w )
9 elin 3637 . . . . . . . . . . . . . 14  |-  ( y  e.  ( z  i^i  w )  <->  ( y  e.  z  /\  y  e.  w ) )
109simplbi2com 627 . . . . . . . . . . . . 13  |-  ( y  e.  w  ->  (
y  e.  z  -> 
y  e.  ( z  i^i  w ) ) )
118, 10syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  ( y  e.  z  ->  y  e.  ( z  i^i  w
) ) )
127, 11mtod 177 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  -.  y  e.  z )
133, 12jca 532 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Haus  /\  ( x  e. 
U. J  /\  y  e.  U. J  /\  x  =/=  y ) )  /\  z  e.  J )  /\  ( w  e.  J  /\  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )  ->  ( x  e.  z  /\  -.  y  e.  z ) )
1413rexlimdvaa 2938 . . . . . . . . 9  |-  ( ( ( J  e.  Haus  /\  ( x  e.  U. J  /\  y  e.  U. J  /\  x  =/=  y
) )  /\  z  e.  J )  ->  ( E. w  e.  J  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) )  -> 
( x  e.  z  /\  -.  y  e.  z ) ) )
1514reximdva 2924 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J  /\  x  =/=  y
) )  ->  ( E. z  e.  J  E. w  e.  J  ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) )  ->  E. z  e.  J  ( x  e.  z  /\  -.  y  e.  z ) ) )
162, 15mpd 15 . . . . . . 7  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J  /\  x  =/=  y
) )  ->  E. z  e.  J  ( x  e.  z  /\  -.  y  e.  z ) )
17 rexanali 2870 . . . . . . 7  |-  ( E. z  e.  J  ( x  e.  z  /\  -.  y  e.  z
)  <->  -.  A. z  e.  J  ( x  e.  z  ->  y  e.  z ) )
1816, 17sylib 196 . . . . . 6  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J  /\  x  =/=  y
) )  ->  -.  A. z  e.  J  ( x  e.  z  -> 
y  e.  z ) )
19183exp2 1206 . . . . 5  |-  ( J  e.  Haus  ->  ( x  e.  U. J  -> 
( y  e.  U. J  ->  ( x  =/=  y  ->  -.  A. z  e.  J  ( x  e.  z  ->  y  e.  z ) ) ) ) )
2019imp32 433 . . . 4  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J
) )  ->  (
x  =/=  y  ->  -.  A. z  e.  J  ( x  e.  z  ->  y  e.  z ) ) )
2120necon4ad 2668 . . 3  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J
) )  ->  ( A. z  e.  J  ( x  e.  z  ->  y  e.  z )  ->  x  =  y ) )
2221ralrimivva 2904 . 2  |-  ( J  e.  Haus  ->  A. x  e.  U. J A. y  e.  U. J ( A. z  e.  J  (
x  e.  z  -> 
y  e.  z )  ->  x  =  y ) )
23 haustop 19051 . . . 4  |-  ( J  e.  Haus  ->  J  e. 
Top )
241toptopon 18654 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2523, 24sylib 196 . . 3  |-  ( J  e.  Haus  ->  J  e.  (TopOn `  U. J ) )
26 ist1-2 19067 . . 3  |-  ( J  e.  (TopOn `  U. J )  ->  ( J  e.  Fre  <->  A. x  e.  U. J A. y  e.  U. J ( A. z  e.  J  (
x  e.  z  -> 
y  e.  z )  ->  x  =  y ) ) )
2725, 26syl 16 . 2  |-  ( J  e.  Haus  ->  ( J  e.  Fre  <->  A. x  e.  U. J A. y  e.  U. J ( A. z  e.  J  (
x  e.  z  -> 
y  e.  z )  ->  x  =  y ) ) )
2822, 27mpbird 232 1  |-  ( J  e.  Haus  ->  J  e. 
Fre )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796    i^i cin 3425   (/)c0 3735   U.cuni 4189   ` cfv 5516   Topctop 18614  TopOnctopon 18615   Frect1 19027   Hauscha 19028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-iota 5479  df-fun 5518  df-fv 5524  df-topgen 14484  df-top 18619  df-topon 18622  df-cld 18739  df-t1 19034  df-haus 19035
This theorem is referenced by:  sncld  19091  ishaus3  19512  reghaus  19514  nrmhaus  19515  tgpt1  19804  metreg  20555  ipasslem8  24372  onint1  28429  oninhaus  28430
  Copyright terms: Public domain W3C validator