MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Unicode version

Theorem hauspwdom 20128
Description: Simplify the cardinal  A ^ NN of hausmapdom 20127 to  ~P B  =  2 ^ B when  B is an infinite cardinal greater than  A. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1  |-  X  = 
U. J
Assertion
Ref Expression
hauspwdom  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( ( cls `  J
) `  A )  ~<_  ~P B )

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4  |-  X  = 
U. J
21hausmapdom 20127 . . 3  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  ~<_  ( A  ^m  NN ) )
32adantr 465 . 2  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( ( cls `  J
) `  A )  ~<_  ( A  ^m  NN ) )
4 simprr 757 . . . 4  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  NN 
~<_  B )
5 1nn 10567 . . . . 5  |-  1  e.  NN
6 noel 3797 . . . . . . 7  |-  -.  1  e.  (/)
7 eleq2 2530 . . . . . . 7  |-  ( NN  =  (/)  ->  ( 1  e.  NN  <->  1  e.  (/) ) )
86, 7mtbiri 303 . . . . . 6  |-  ( NN  =  (/)  ->  -.  1  e.  NN )
98adantr 465 . . . . 5  |-  ( ( NN  =  (/)  /\  A  =  (/) )  ->  -.  1  e.  NN )
105, 9mt2 179 . . . 4  |-  -.  ( NN  =  (/)  /\  A  =  (/) )
11 mapdom2 7707 . . . 4  |-  ( ( NN  ~<_  B  /\  -.  ( NN  =  (/)  /\  A  =  (/) ) )  -> 
( A  ^m  NN )  ~<_  ( A  ^m  B ) )
124, 10, 11sylancl 662 . . 3  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( A  ^m  NN )  ~<_  ( A  ^m  B ) )
13 sdomdom 7562 . . . . . . 7  |-  ( A 
~<  2o  ->  A  ~<_  2o )
1413adantl 466 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  A  ~<_  2o )
15 mapdom1 7701 . . . . . 6  |-  ( A  ~<_  2o  ->  ( A  ^m  B )  ~<_  ( 2o 
^m  B ) )
1614, 15syl 16 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  ( A  ^m  B )  ~<_  ( 2o 
^m  B ) )
17 reldom 7541 . . . . . . . . 9  |-  Rel  ~<_
1817brrelex2i 5050 . . . . . . . 8  |-  ( NN  ~<_  B  ->  B  e.  _V )
1918ad2antll 728 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  B  e.  _V )
20 pw2eng 7642 . . . . . . 7  |-  ( B  e.  _V  ->  ~P B  ~~  ( 2o  ^m  B ) )
21 ensym 7583 . . . . . . 7  |-  ( ~P B  ~~  ( 2o 
^m  B )  -> 
( 2o  ^m  B
)  ~~  ~P B
)
2219, 20, 213syl 20 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( 2o  ^m  B
)  ~~  ~P B
)
2322adantr 465 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  ( 2o  ^m  B )  ~~  ~P B )
24 domentr 7593 . . . . 5  |-  ( ( ( A  ^m  B
)  ~<_  ( 2o  ^m  B )  /\  ( 2o  ^m  B )  ~~  ~P B )  ->  ( A  ^m  B )  ~<_  ~P B )
2516, 23, 24syl2anc 661 . . . 4  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  ( A  ^m  B )  ~<_  ~P B
)
26 onfin2 7728 . . . . . . . . 9  |-  om  =  ( On  i^i  Fin )
27 inss2 3715 . . . . . . . . 9  |-  ( On 
i^i  Fin )  C_  Fin
2826, 27eqsstri 3529 . . . . . . . 8  |-  om  C_  Fin
29 2onn 7307 . . . . . . . 8  |-  2o  e.  om
3028, 29sselii 3496 . . . . . . 7  |-  2o  e.  Fin
31 simprl 756 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  A  ~<_  ~P B )
3217brrelexi 5049 . . . . . . . 8  |-  ( A  ~<_  ~P B  ->  A  e.  _V )
3331, 32syl 16 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  A  e.  _V )
34 fidomtri 8391 . . . . . . 7  |-  ( ( 2o  e.  Fin  /\  A  e.  _V )  ->  ( 2o  ~<_  A  <->  -.  A  ~<  2o ) )
3530, 33, 34sylancr 663 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( 2o  ~<_  A  <->  -.  A  ~<  2o ) )
3635biimpar 485 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  -.  A  ~<  2o )  ->  2o  ~<_  A )
37 numth3 8867 . . . . . . . . 9  |-  ( B  e.  _V  ->  B  e.  dom  card )
3819, 37syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  B  e.  dom  card )
3938adantr 465 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  B  e.  dom  card )
40 nnenom 12093 . . . . . . . . . 10  |-  NN  ~~  om
4140ensymi 7584 . . . . . . . . 9  |-  om  ~~  NN
42 endomtr 7592 . . . . . . . . 9  |-  ( ( om  ~~  NN  /\  NN 
~<_  B )  ->  om  ~<_  B )
4341, 4, 42sylancr 663 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  om 
~<_  B )
4443adantr 465 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  om  ~<_  B )
45 simpr 461 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  2o  ~<_  A )
4631adantr 465 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  A  ~<_  ~P B
)
47 mappwen 8510 . . . . . . 7  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( A  ^m  B )  ~~  ~P B )
4839, 44, 45, 46, 47syl22anc 1229 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  ( A  ^m  B )  ~~  ~P B )
49 endom 7561 . . . . . 6  |-  ( ( A  ^m  B ) 
~~  ~P B  ->  ( A  ^m  B )  ~<_  ~P B )
5048, 49syl 16 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  ( A  ^m  B )  ~<_  ~P B
)
5136, 50syldan 470 . . . 4  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  -.  A  ~<  2o )  ->  ( A  ^m  B )  ~<_  ~P B
)
5225, 51pm2.61dan 791 . . 3  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( A  ^m  B
)  ~<_  ~P B )
53 domtr 7587 . . 3  |-  ( ( ( A  ^m  NN )  ~<_  ( A  ^m  B )  /\  ( A  ^m  B )  ~<_  ~P B )  ->  ( A  ^m  NN )  ~<_  ~P B )
5412, 52, 53syl2anc 661 . 2  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( A  ^m  NN )  ~<_  ~P B )
55 domtr 7587 . 2  |-  ( ( ( ( cls `  J
) `  A )  ~<_  ( A  ^m  NN )  /\  ( A  ^m  NN )  ~<_  ~P B
)  ->  ( ( cls `  J ) `  A )  ~<_  ~P B
)
563, 54, 55syl2anc 661 1  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( ( cls `  J
) `  A )  ~<_  ~P B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   _Vcvv 3109    i^i cin 3470    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   U.cuni 4251   class class class wbr 4456   Oncon0 4887   dom cdm 5008   ` cfv 5594  (class class class)co 6296   omcom 6699   2oc2o 7142    ^m cmap 7438    ~~ cen 7532    ~<_ cdom 7533    ~< csdm 7534   Fincfn 7535   cardccrd 8333   1c1 9510   NNcn 10556   clsccl 19646   Hauscha 19936   1stcc1stc 20064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-ac2 8860  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-oi 7953  df-card 8337  df-acn 8340  df-ac 8514  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-top 19526  df-topon 19529  df-cld 19647  df-ntr 19648  df-cls 19649  df-lm 19857  df-haus 19943  df-1stc 20066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator