MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausnei2 Structured version   Unicode version

Theorem hausnei2 19620
Description: The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009.)
Assertion
Ref Expression
hausnei2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
Distinct variable groups:    x, y    v, u, x, y, J   
u, X, v, x, y

Proof of Theorem hausnei2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishaus2 19618 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
2 topontop 19194 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3 simp1 996 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  J  e.  Top )
43adantr 465 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  J  e.  Top )
5 simp2 997 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  m  e.  J )
65adantr 465 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  m  e.  J
)
7 simp1 996 . . . . . . . . . . . 12  |-  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  x  e.  m )
87adantl 466 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  x  e.  m
)
9 opnneip 19386 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  m  e.  J  /\  x  e.  m )  ->  m  e.  ( ( nei `  J ) `
 { x }
) )
104, 6, 8, 9syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  m  e.  ( ( nei `  J
) `  { x } ) )
11 simp3 998 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  n  e.  J )
1211adantr 465 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  n  e.  J
)
13 simp2 997 . . . . . . . . . . . 12  |-  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  -> 
y  e.  n )
1413adantl 466 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  y  e.  n
)
15 opnneip 19386 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  n  e.  J  /\  y  e.  n )  ->  n  e.  ( ( nei `  J ) `
 { y } ) )
164, 12, 14, 15syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  n  e.  ( ( nei `  J
) `  { y } ) )
17 simp3 998 . . . . . . . . . . 11  |-  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  -> 
( m  i^i  n
)  =  (/) )
1817adantl 466 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  ( m  i^i  n )  =  (/) )
19 ineq1 3693 . . . . . . . . . . . 12  |-  ( u  =  m  ->  (
u  i^i  v )  =  ( m  i^i  v ) )
2019eqeq1d 2469 . . . . . . . . . . 11  |-  ( u  =  m  ->  (
( u  i^i  v
)  =  (/)  <->  ( m  i^i  v )  =  (/) ) )
21 ineq2 3694 . . . . . . . . . . . 12  |-  ( v  =  n  ->  (
m  i^i  v )  =  ( m  i^i  n ) )
2221eqeq1d 2469 . . . . . . . . . . 11  |-  ( v  =  n  ->  (
( m  i^i  v
)  =  (/)  <->  ( m  i^i  n )  =  (/) ) )
2320, 22rspc2ev 3225 . . . . . . . . . 10  |-  ( ( m  e.  ( ( nei `  J ) `
 { x }
)  /\  n  e.  ( ( nei `  J
) `  { y } )  /\  (
m  i^i  n )  =  (/) )  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) )
2410, 16, 18, 23syl3anc 1228 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) )
2524ex 434 . . . . . . . 8  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n )  =  (/) )  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) )
26253expib 1199 . . . . . . 7  |-  ( J  e.  Top  ->  (
( m  e.  J  /\  n  e.  J
)  ->  ( (
x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  E. u  e.  (
( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
2726rexlimdvv 2961 . . . . . 6  |-  ( J  e.  Top  ->  ( E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  E. u  e.  (
( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) )
28 neii2 19375 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  u  e.  ( ( nei `  J ) `  { x } ) )  ->  E. m  e.  J  ( {
x }  C_  m  /\  m  C_  u ) )
2928ex 434 . . . . . . . 8  |-  ( J  e.  Top  ->  (
u  e.  ( ( nei `  J ) `
 { x }
)  ->  E. m  e.  J  ( {
x }  C_  m  /\  m  C_  u ) ) )
30 neii2 19375 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  v  e.  ( ( nei `  J ) `  { y } ) )  ->  E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v ) )
3130ex 434 . . . . . . . 8  |-  ( J  e.  Top  ->  (
v  e.  ( ( nei `  J ) `
 { y } )  ->  E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v ) ) )
32 vex 3116 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
3332snss 4151 . . . . . . . . . . . . . 14  |-  ( x  e.  m  <->  { x }  C_  m )
3433anbi1i 695 . . . . . . . . . . . . 13  |-  ( ( x  e.  m  /\  m  C_  u )  <->  ( {
x }  C_  m  /\  m  C_  u ) )
35 vex 3116 . . . . . . . . . . . . . . . . . . . . . . 23  |-  y  e. 
_V
3635snss 4151 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  n  <->  { y }  C_  n )
3736anbi1i 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  n  /\  n  C_  v )  <->  ( {
y }  C_  n  /\  n  C_  v ) )
38 simp1l 1020 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  x  e.  m )
39 simp2l 1022 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  y  e.  n )
40 ss2in 3725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  C_  u  /\  n  C_  v )  -> 
( m  i^i  n
)  C_  ( u  i^i  v ) )
41 ssn0 3818 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( m  i^i  n
)  C_  ( u  i^i  v )  /\  (
m  i^i  n )  =/=  (/) )  ->  (
u  i^i  v )  =/=  (/) )
4241ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  i^i  n ) 
C_  ( u  i^i  v )  ->  (
( m  i^i  n
)  =/=  (/)  ->  (
u  i^i  v )  =/=  (/) ) )
4342necon4d 2694 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  i^i  n ) 
C_  ( u  i^i  v )  ->  (
( u  i^i  v
)  =  (/)  ->  (
m  i^i  n )  =  (/) ) )
4440, 43syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  C_  u  /\  n  C_  v )  -> 
( ( u  i^i  v )  =  (/)  ->  ( m  i^i  n
)  =  (/) ) )
4544ad2ant2l 745 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v ) )  -> 
( ( u  i^i  v )  =  (/)  ->  ( m  i^i  n
)  =  (/) ) )
46453impia 1193 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  (
m  i^i  n )  =  (/) )
4738, 39, 463jca 1176 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  (
x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )
48473exp 1195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  m  /\  m  C_  u )  -> 
( ( y  e.  n  /\  n  C_  v )  ->  (
( u  i^i  v
)  =  (/)  ->  (
x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
4937, 48syl5bir 218 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  m  /\  m  C_  u )  -> 
( ( { y }  C_  n  /\  n  C_  v )  -> 
( ( u  i^i  v )  =  (/)  ->  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
5049com3r 79 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  i^i  v )  =  (/)  ->  ( ( x  e.  m  /\  m  C_  u )  -> 
( ( { y }  C_  n  /\  n  C_  v )  -> 
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
5150imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( u  i^i  v
)  =  (/)  /\  (
x  e.  m  /\  m  C_  u ) )  ->  ( ( { y }  C_  n  /\  n  C_  v )  ->  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n )  =  (/) ) ) )
52513adant1 1014 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  (
x  e.  m  /\  m  C_  u ) )  ->  ( ( { y }  C_  n  /\  n  C_  v )  ->  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n )  =  (/) ) ) )
5352reximdv 2937 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  (
x  e.  m  /\  m  C_  u ) )  ->  ( E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
54533exp 1195 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
( u  i^i  v
)  =  (/)  ->  (
( x  e.  m  /\  m  C_  u )  ->  ( E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) ) )
5554com34 83 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
( u  i^i  v
)  =  (/)  ->  ( E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
)  ->  ( (
x  e.  m  /\  m  C_  u )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) ) )
56553imp 1190 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  (
( x  e.  m  /\  m  C_  u )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
5734, 56syl5bir 218 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  (
( { x }  C_  m  /\  m  C_  u )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
5857reximdv 2937 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  ( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u
)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
59583exp 1195 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (
( u  i^i  v
)  =  (/)  ->  ( E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
)  ->  ( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u
)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) ) )
6059com24 87 . . . . . . . . 9  |-  ( J  e.  Top  ->  ( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u
)  ->  ( E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
)  ->  ( (
u  i^i  v )  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) ) )
6160impd 431 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u )  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  (
( u  i^i  v
)  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
6229, 31, 61syl2and 483 . . . . . . 7  |-  ( J  e.  Top  ->  (
( u  e.  ( ( nei `  J
) `  { x } )  /\  v  e.  ( ( nei `  J
) `  { y } ) )  -> 
( ( u  i^i  v )  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
6362rexlimdvv 2961 . . . . . 6  |-  ( J  e.  Top  ->  ( E. u  e.  (
( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
6427, 63impbid 191 . . . . 5  |-  ( J  e.  Top  ->  ( E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) )
6564imbi2d 316 . . . 4  |-  ( J  e.  Top  ->  (
( x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  <-> 
( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
66652ralbidv 2908 . . 3  |-  ( J  e.  Top  ->  ( A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
672, 66syl 16 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. x  e.  X  A. y  e.  X  (
x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
681, 67bitrd 253 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   ` cfv 5586   Topctop 19161  TopOnctopon 19162   neicnei 19364   Hauscha 19575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-top 19166  df-topon 19169  df-nei 19365  df-haus 19582
This theorem is referenced by:  hausflim  20217
  Copyright terms: Public domain W3C validator