MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausllycmp Structured version   Unicode version

Theorem hausllycmp 19863
Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
hausllycmp  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  J  e. 𝑛Locally  Comp )

Proof of Theorem hausllycmp
Dummy variables  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 19700 . . 3  |-  ( J  e.  Haus  ->  J  e. 
Top )
21adantr 465 . 2  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  J  e.  Top )
3 eqid 2467 . . . . . 6  |-  U. J  =  U. J
4 eqid 2467 . . . . . 6  |-  { z  e.  J  |  E. v  e.  J  (
y  e.  v  /\  ( ( cls `  J
) `  v )  C_  ( U. J  \ 
z ) ) }  =  { z  e.  J  |  E. v  e.  J  ( y  e.  v  /\  (
( cls `  J
) `  v )  C_  ( U. J  \ 
z ) ) }
5 simpll 753 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Haus )
6 difssd 3637 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( U. J  \  x
)  C_  U. J )
7 simplr 754 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Comp )
81ad2antrr 725 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Top )
9 simprl 755 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  x  e.  J )
103opncld 19402 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( U. J  \  x )  e.  (
Clsd `  J )
)
118, 9, 10syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( U. J  \  x
)  e.  ( Clsd `  J ) )
12 cmpcld 19770 . . . . . . 7  |-  ( ( J  e.  Comp  /\  ( U. J  \  x
)  e.  ( Clsd `  J ) )  -> 
( Jt  ( U. J  \  x ) )  e. 
Comp )
137, 11, 12syl2anc 661 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( Jt  ( U. J  \  x
) )  e.  Comp )
14 simprr 756 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  y  e.  x )
15 elssuni 4281 . . . . . . . . 9  |-  ( x  e.  J  ->  x  C_ 
U. J )
1615ad2antrl 727 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  x  C_ 
U. J )
17 dfss4 3737 . . . . . . . 8  |-  ( x 
C_  U. J  <->  ( U. J  \  ( U. J  \  x ) )  =  x )
1816, 17sylib 196 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( U. J  \  ( U. J  \  x
) )  =  x )
1914, 18eleqtrrd 2558 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  y  e.  ( U. J  \ 
( U. J  \  x ) ) )
203, 4, 5, 6, 13, 19hauscmplem 19774 . . . . 5  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. u  e.  J  ( y  e.  u  /\  (
( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) ) ) )
2118sseq2d 3537 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  (
( ( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) )  <->  ( ( cls `  J ) `  u )  C_  x
) )
2221anbi2d 703 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  (
( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) ) )  <-> 
( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )
2322rexbidv 2978 . . . . 5  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( E. u  e.  J  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) ) )  <->  E. u  e.  J  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )
2420, 23mpbid 210 . . . 4  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. u  e.  J  ( y  e.  u  /\  (
( cls `  J
) `  u )  C_  x ) )
258adantr 465 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  J  e.  Top )
26 simprl 755 . . . . . . . 8  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  e.  J
)
27 simprrl 763 . . . . . . . 8  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  y  e.  u
)
28 opnneip 19488 . . . . . . . 8  |-  ( ( J  e.  Top  /\  u  e.  J  /\  y  e.  u )  ->  u  e.  ( ( nei `  J ) `
 { y } ) )
2925, 26, 27, 28syl3anc 1228 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  e.  ( ( nei `  J
) `  { y } ) )
30 elssuni 4281 . . . . . . . . 9  |-  ( u  e.  J  ->  u  C_ 
U. J )
3130ad2antrl 727 . . . . . . . 8  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  C_  U. J
)
323sscls 19425 . . . . . . . 8  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  u  C_  (
( cls `  J
) `  u )
)
3325, 31, 32syl2anc 661 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  C_  (
( cls `  J
) `  u )
)
343clsss3 19428 . . . . . . . 8  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  C_  U. J )
3525, 31, 34syl2anc 661 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  C_  U. J )
363ssnei2 19485 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  u  e.  ( ( nei `  J ) `
 { y } ) )  /\  (
u  C_  ( ( cls `  J ) `  u )  /\  (
( cls `  J
) `  u )  C_ 
U. J ) )  ->  ( ( cls `  J ) `  u
)  e.  ( ( nei `  J ) `
 { y } ) )
3725, 29, 33, 35, 36syl22anc 1229 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ( ( nei `  J ) `
 { y } ) )
38 simprrr 764 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  C_  x )
39 vex 3121 . . . . . . . 8  |-  x  e. 
_V
4039elpw2 4617 . . . . . . 7  |-  ( ( ( cls `  J
) `  u )  e.  ~P x  <->  ( ( cls `  J ) `  u )  C_  x
)
4138, 40sylibr 212 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ~P x
)
4237, 41elind 3693 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) )
437adantr 465 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  J  e.  Comp )
443clscld 19416 . . . . . . 7  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  e.  ( Clsd `  J ) )
4525, 31, 44syl2anc 661 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ( Clsd `  J ) )
46 cmpcld 19770 . . . . . 6  |-  ( ( J  e.  Comp  /\  (
( cls `  J
) `  u )  e.  ( Clsd `  J
) )  ->  ( Jt  ( ( cls `  J
) `  u )
)  e.  Comp )
4743, 45, 46syl2anc 661 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( Jt  ( ( cls `  J ) `
 u ) )  e.  Comp )
48 oveq2 6303 . . . . . . 7  |-  ( v  =  ( ( cls `  J ) `  u
)  ->  ( Jt  v
)  =  ( Jt  ( ( cls `  J
) `  u )
) )
4948eleq1d 2536 . . . . . 6  |-  ( v  =  ( ( cls `  J ) `  u
)  ->  ( ( Jt  v )  e.  Comp  <->  ( Jt  ( ( cls `  J
) `  u )
)  e.  Comp )
)
5049rspcev 3219 . . . . 5  |-  ( ( ( ( cls `  J
) `  u )  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x )  /\  ( Jt  ( ( cls `  J ) `  u
) )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  v )  e.  Comp )
5142, 47, 50syl2anc 661 . . . 4  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  E. v  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  v )  e.  Comp )
5224, 51rexlimddv 2963 . . 3  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. v  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  v )  e.  Comp )
5352ralrimivva 2888 . 2  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  A. x  e.  J  A. y  e.  x  E. v  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  v )  e.  Comp )
54 isnlly 19838 . 2  |-  ( J  e. 𝑛Locally 
Comp 
<->  ( J  e.  Top  /\ 
A. x  e.  J  A. y  e.  x  E. v  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  v )  e.  Comp )
)
552, 53, 54sylanbrc 664 1  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  J  e. 𝑛Locally  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   {crab 2821    \ cdif 3478    i^i cin 3480    C_ wss 3481   ~Pcpw 4016   {csn 4033   U.cuni 4251   ` cfv 5594  (class class class)co 6295   ↾t crest 14693   Topctop 19263   Clsdccld 19385   clsccl 19387   neicnei 19466   Hauscha 19677   Compccmp 19754  𝑛Locally cnlly 19834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-fin 7532  df-fi 7883  df-rest 14695  df-topgen 14716  df-top 19268  df-bases 19270  df-topon 19271  df-cld 19388  df-cls 19390  df-nei 19467  df-haus 19684  df-cmp 19755  df-nlly 19836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator