MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimi Structured version   Visualization version   Unicode version

Theorem hausflimi 20988
Description: One direction of hausflim 20989. A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010.) (Revised by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimi  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  F ) )
Distinct variable groups:    x, F    x, J

Proof of Theorem hausflimi
Dummy variables  v  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 459 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  J  e.  Haus )
2 simprll 771 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  e.  ( J  fLim  F
) )
3 eqid 2450 . . . . . . . . . . 11  |-  U. J  =  U. J
43flimelbas 20976 . . . . . . . . . 10  |-  ( x  e.  ( J  fLim  F )  ->  x  e.  U. J )
52, 4syl 17 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  e.  U. J )
6 simprlr 772 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  y  e.  ( J  fLim  F
) )
73flimelbas 20976 . . . . . . . . . 10  |-  ( y  e.  ( J  fLim  F )  ->  y  e.  U. J )
86, 7syl 17 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  y  e.  U. J )
9 simprr 765 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  =/=  y )
103hausnei 20337 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J  /\  x  =/=  y
) )  ->  E. u  e.  J  E. v  e.  J  ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
111, 5, 8, 9, 10syl13anc 1269 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  E. u  e.  J  E. v  e.  J  ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
12 df-3an 986 . . . . . . . . . 10  |-  ( ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  <->  ( (
x  e.  u  /\  y  e.  v )  /\  ( u  i^i  v
)  =  (/) ) )
13 simprl 763 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )
14 hausflimlem 20987 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  ( u  e.  J  /\  v  e.  J )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( u  i^i  v )  =/=  (/) )
15143expa 1207 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( J  fLim  F
)  /\  y  e.  ( J  fLim  F ) )  /\  ( u  e.  J  /\  v  e.  J ) )  /\  ( x  e.  u  /\  y  e.  v
) )  ->  (
u  i^i  v )  =/=  (/) )
1613, 15sylanl1 655 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Haus  /\  ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( u  i^i  v )  =/=  (/) )
1716a1d 26 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Haus  /\  ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( x  =/=  y  ->  ( u  i^i  v )  =/=  (/) ) )
1817necon4d 2647 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Haus  /\  ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( (
u  i^i  v )  =  (/)  ->  x  =  y ) )
1918expimpd 607 . . . . . . . . . 10  |-  ( ( ( J  e.  Haus  /\  ( ( x  e.  ( J  fLim  F
)  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  ->  (
( ( x  e.  u  /\  y  e.  v )  /\  (
u  i^i  v )  =  (/) )  ->  x  =  y ) )
2012, 19syl5bi 221 . . . . . . . . 9  |-  ( ( ( J  e.  Haus  /\  ( ( x  e.  ( J  fLim  F
)  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  ->  (
( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  ->  x  =  y )
)
2120rexlimdvva 2885 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  ( E. u  e.  J  E. v  e.  J  ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  ->  x  =  y )
)
2211, 21mpd 15 . . . . . . 7  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  =  y )
2322expr 619 . . . . . 6  |-  ( ( J  e.  Haus  /\  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )  -> 
( x  =/=  y  ->  x  =  y ) )
2423necon1bd 2641 . . . . 5  |-  ( ( J  e.  Haus  /\  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )  -> 
( -.  x  =  y  ->  x  =  y ) )
2524pm2.18d 115 . . . 4  |-  ( ( J  e.  Haus  /\  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )  ->  x  =  y )
2625ex 436 . . 3  |-  ( J  e.  Haus  ->  ( ( x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) )  ->  x  =  y ) )
2726alrimivv 1773 . 2  |-  ( J  e.  Haus  ->  A. x A. y ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  ->  x  =  y ) )
28 eleq1 2516 . . 3  |-  ( x  =  y  ->  (
x  e.  ( J 
fLim  F )  <->  y  e.  ( J  fLim  F ) ) )
2928mo4 2345 . 2  |-  ( E* x  x  e.  ( J  fLim  F )  <->  A. x A. y ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  ->  x  =  y ) )
3027, 29sylibr 216 1  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 984   A.wal 1441    = wceq 1443    e. wcel 1886   E*wmo 2299    =/= wne 2621   E.wrex 2737    i^i cin 3402   (/)c0 3730   U.cuni 4197  (class class class)co 6288   Hauscha 20317    fLim cflim 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-fbas 18960  df-top 19914  df-nei 20107  df-haus 20324  df-fil 20854  df-flim 20947
This theorem is referenced by:  hausflim  20989  hausflf  21005  cmetss  22277  minveclem4a  22365  minveclem4aOLD  22377
  Copyright terms: Public domain W3C validator