MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflim Structured version   Unicode version

Theorem hausflim 19685
Description: A condition for a topology to be Hausdorff in terms of filters. A topology is Hausdorff iff every filter has at most one limit point. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcf.1  |-  X  = 
U. J
Assertion
Ref Expression
hausflim  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) ) )
Distinct variable groups:    x, f, J    f, X, x

Proof of Theorem hausflim
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 19066 . . 3  |-  ( J  e.  Haus  ->  J  e. 
Top )
2 hausflimi 19684 . . . 4  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  f ) )
32ralrimivw 2830 . . 3  |-  ( J  e.  Haus  ->  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) )
41, 3jca 532 . 2  |-  ( J  e.  Haus  ->  ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) ) )
5 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  J  e.  Top )
6 flimcf.1 . . . . . . . . . . . . . . 15  |-  X  = 
U. J
76toptopon 18669 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
85, 7sylib 196 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  J  e.  (TopOn `  X
) )
9 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
z  e.  X )
109snssd 4125 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { z }  C_  X )
11 snnzg 4099 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  { z }  =/=  (/) )
129, 11syl 16 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { z }  =/=  (/) )
13 neifil 19584 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  {
z }  C_  X  /\  { z }  =/=  (/) )  ->  ( ( nei `  J ) `  { z } )  e.  ( Fil `  X
) )
148, 10, 12, 13syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { z } )  e.  ( Fil `  X ) )
15 filfbas 19552 . . . . . . . . . . . 12  |-  ( ( ( nei `  J
) `  { z } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  {
z } )  e.  ( fBas `  X
) )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { z } )  e.  (
fBas `  X )
)
17 simprlr 762 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  w  e.  X )
1817snssd 4125 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { w }  C_  X )
19 snnzg 4099 . . . . . . . . . . . . . 14  |-  ( w  e.  X  ->  { w }  =/=  (/) )
2017, 19syl 16 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { w }  =/=  (/) )
21 neifil 19584 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  {
w }  C_  X  /\  { w }  =/=  (/) )  ->  ( ( nei `  J ) `  { w } )  e.  ( Fil `  X
) )
228, 18, 20, 21syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { w } )  e.  ( Fil `  X ) )
23 filfbas 19552 . . . . . . . . . . . 12  |-  ( ( ( nei `  J
) `  { w } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  {
w } )  e.  ( fBas `  X
) )
2422, 23syl 16 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { w } )  e.  (
fBas `  X )
)
25 fbunfip 19573 . . . . . . . . . . 11  |-  ( ( ( ( nei `  J
) `  { z } )  e.  (
fBas `  X )  /\  ( ( nei `  J
) `  { w } )  e.  (
fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) )  <->  A. u  e.  (
( nei `  J
) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) ) )
2616, 24, 25syl2anc 661 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  <->  A. u  e.  (
( nei `  J
) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) ) )
276neisspw 18842 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { z } )  C_  ~P X )
286neisspw 18842 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { w } )  C_  ~P X )
2927, 28unssd 3639 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X )
3029adantr 465 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) )  C_  ~P X )
3130a1d 25 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) )  C_  ~P X ) )
32 ssun1 3626 . . . . . . . . . . . . . 14  |-  ( ( nei `  J ) `
 { z } )  C_  ( (
( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )
33 filn0 19566 . . . . . . . . . . . . . . 15  |-  ( ( ( nei `  J
) `  { z } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  {
z } )  =/=  (/) )
3414, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { z } )  =/=  (/) )
35 ssn0 3777 . . . . . . . . . . . . . 14  |-  ( ( ( ( nei `  J
) `  { z } )  C_  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  /\  ( ( nei `  J
) `  { z } )  =/=  (/) )  -> 
( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) )  =/=  (/) )
3632, 34, 35sylancr 663 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) )  =/=  (/) )
3736a1d 25 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) )  =/=  (/) ) )
38 idd 24 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )
3931, 37, 383jcad 1169 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
406topopn 18650 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  X  e.  J )
4140adantr 465 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  X  e.  J )
42 fsubbas 19571 . . . . . . . . . . . . 13  |-  ( X  e.  J  ->  (
( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
4341, 42syl 16 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
44 fgcl 19582 . . . . . . . . . . . . . . 15  |-  ( ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )
4544adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )
46 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  z  =/=  w )
479adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  z  e.  X )
4817adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  w  e.  X )
49 fvex 5808 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( nei `  J ) `
 { z } )  e.  _V
50 fvex 5808 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( nei `  J ) `
 { w }
)  e.  _V
5149, 50unex 6487 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  e. 
_V
52 ssfii 7779 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  e. 
_V  ->  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) )  C_  ( fi `  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )
54 ssfg 19576 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  ->  ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) 
C_  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )
5554adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  ( fi `  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
5653, 55syl5ss 3474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
5732, 56syl5ss 3474 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
( nei `  J
) `  { z } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
588adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  J  e.  (TopOn `  X )
)
59 elflim 19675 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )  -> 
( z  e.  ( J  fLim  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( z  e.  X  /\  (
( nei `  J
) `  { z } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6058, 45, 59syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
z  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( z  e.  X  /\  (
( nei `  J
) `  { z } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6147, 57, 60mpbir2and 913 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) )
6256unssbd 3641 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
( nei `  J
) `  { w } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
63 elflim 19675 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )  -> 
( w  e.  ( J  fLim  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( w  e.  X  /\  (
( nei `  J
) `  { w } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6458, 45, 63syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
w  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( w  e.  X  /\  (
( nei `  J
) `  { w } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6548, 62, 64mpbir2and 913 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) )
66 eleq1 2526 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  (
x  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  z  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) ) )
67 eleq1 2526 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  (
x  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  w  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) ) )
6866, 67moi 3247 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  X  /\  w  e.  X
)  /\  E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) )  /\  ( z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )  /\  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )  ->  z  =  w )
69683com23 1194 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  X  /\  w  e.  X
)  /\  ( z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )  /\  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) )  /\  E* x  x  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )  -> 
z  =  w )
70693expia 1190 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  X  /\  w  e.  X
)  /\  ( z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )  /\  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )  ->  ( E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) )  ->  z  =  w ) )
7147, 48, 61, 65, 70syl22anc 1220 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  ( E* x  x  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  ->  z  =  w ) )
7271necon3ad 2661 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
z  =/=  w  ->  -.  E* x  x  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
7346, 72mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  -.  E* x  x  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
74 oveq2 6207 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( J  fLim  f )  =  ( J  fLim  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
7574eleq2d 2524 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( x  e.  ( J  fLim  f
)  <->  x  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) ) )
7675mobidv 2286 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( E* x  x  e.  ( J  fLim  f )  <->  E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) ) ) )
7776notbid 294 . . . . . . . . . . . . . . 15  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( -.  E* x  x  e.  ( J  fLim  f )  <->  -.  E* x  x  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
7877rspcev 3177 . . . . . . . . . . . . . 14  |-  ( ( ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) )  e.  ( Fil `  X
)  /\  -.  E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) ) )  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) )
7945, 73, 78syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) )
8079ex 434 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) ) )
8143, 80sylbird 235 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) ) )
8239, 81syld 44 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  E. f  e.  ( Fil `  X )  -.  E* x  x  e.  ( J  fLim  f ) ) )
8326, 82sylbird 235 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( A. u  e.  ( ( nei `  J
) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/)  ->  E. f  e.  ( Fil `  X )  -.  E* x  x  e.  ( J  fLim  f ) ) )
84 df-ne 2649 . . . . . . . . . . . . 13  |-  ( ( u  i^i  v )  =/=  (/)  <->  -.  ( u  i^i  v )  =  (/) )
8584ralbii 2838 . . . . . . . . . . . 12  |-  ( A. v  e.  ( ( nei `  J ) `  { w } ) ( u  i^i  v
)  =/=  (/)  <->  A. v  e.  ( ( nei `  J
) `  { w } )  -.  (
u  i^i  v )  =  (/) )
86 ralnex 2851 . . . . . . . . . . . 12  |-  ( A. v  e.  ( ( nei `  J ) `  { w } )  -.  ( u  i^i  v )  =  (/)  <->  -.  E. v  e.  ( ( nei `  J ) `
 { w }
) ( u  i^i  v )  =  (/) )
8785, 86bitri 249 . . . . . . . . . . 11  |-  ( A. v  e.  ( ( nei `  J ) `  { w } ) ( u  i^i  v
)  =/=  (/)  <->  -.  E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
8887ralbii 2838 . . . . . . . . . 10  |-  ( A. u  e.  ( ( nei `  J ) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) 
<-> 
A. u  e.  ( ( nei `  J
) `  { z } )  -.  E. v  e.  ( ( nei `  J ) `  { w } ) ( u  i^i  v
)  =  (/) )
89 ralnex 2851 . . . . . . . . . 10  |-  ( A. u  e.  ( ( nei `  J ) `  { z } )  -.  E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) 
<->  -.  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
9088, 89bitri 249 . . . . . . . . 9  |-  ( A. u  e.  ( ( nei `  J ) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) 
<->  -.  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
91 rexnal 2853 . . . . . . . . 9  |-  ( E. f  e.  ( Fil `  X )  -.  E* x  x  e.  ( J  fLim  f )  <->  -.  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) )
9283, 90, 913imtr3g 269 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/)  ->  -.  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) ) )
9392con4d 105 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f )  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) )
9493imp 429 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  E. u  e.  (
( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
9594an32s 802 . . . . 5  |-  ( ( ( J  e.  Top  /\ 
A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f
) )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  z  =/=  w ) )  ->  E. u  e.  (
( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
9695expr 615 . . . 4  |-  ( ( ( J  e.  Top  /\ 
A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f
) )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( z  =/=  w  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) )
9796ralrimivva 2912 . . 3  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  A. z  e.  X  A. w  e.  X  ( z  =/=  w  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) )
98 simpl 457 . . . . 5  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  J  e.  Top )
9998, 7sylib 196 . . . 4  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  J  e.  (TopOn `  X
) )
100 hausnei2 19088 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. z  e.  X  A. w  e.  X  ( z  =/=  w  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) ) )
10199, 100syl 16 . . 3  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  -> 
( J  e.  Haus  <->  A. z  e.  X  A. w  e.  X  (
z  =/=  w  ->  E. u  e.  (
( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) ) )
10297, 101mpbird 232 . 2  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  J  e.  Haus )
1034, 102impbii 188 1  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E*wmo 2263    =/= wne 2647   A.wral 2798   E.wrex 2799   _Vcvv 3076    u. cun 3433    i^i cin 3434    C_ wss 3435   (/)c0 3744   ~Pcpw 3967   {csn 3984   U.cuni 4198   ` cfv 5525  (class class class)co 6199   ficfi 7770   fBascfbas 17928   filGencfg 17929   Topctop 18629  TopOnctopon 18630   neicnei 18832   Hauscha 19043   Filcfil 19549    fLim cflim 19638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-en 7420  df-fin 7423  df-fi 7771  df-fbas 17938  df-fg 17939  df-top 18634  df-topon 18637  df-nei 18833  df-haus 19050  df-fil 19550  df-flim 19643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator