MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflim Structured version   Unicode version

Theorem hausflim 20460
Description: A condition for a topology to be Hausdorff in terms of filters. A topology is Hausdorff iff every filter has at most one limit point. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcf.1  |-  X  = 
U. J
Assertion
Ref Expression
hausflim  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) ) )
Distinct variable groups:    x, f, J    f, X, x

Proof of Theorem hausflim
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 19810 . . 3  |-  ( J  e.  Haus  ->  J  e. 
Top )
2 hausflimi 20459 . . . 4  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  f ) )
32ralrimivw 2858 . . 3  |-  ( J  e.  Haus  ->  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) )
41, 3jca 532 . 2  |-  ( J  e.  Haus  ->  ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) ) )
5 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  J  e.  Top )
6 flimcf.1 . . . . . . . . . . . . . . 15  |-  X  = 
U. J
76toptopon 19412 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
85, 7sylib 196 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  J  e.  (TopOn `  X
) )
9 simprll 763 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
z  e.  X )
109snssd 4160 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { z }  C_  X )
11 snnzg 4132 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  { z }  =/=  (/) )
129, 11syl 16 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { z }  =/=  (/) )
13 neifil 20359 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  {
z }  C_  X  /\  { z }  =/=  (/) )  ->  ( ( nei `  J ) `  { z } )  e.  ( Fil `  X
) )
148, 10, 12, 13syl3anc 1229 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { z } )  e.  ( Fil `  X ) )
15 filfbas 20327 . . . . . . . . . . . 12  |-  ( ( ( nei `  J
) `  { z } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  {
z } )  e.  ( fBas `  X
) )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { z } )  e.  (
fBas `  X )
)
17 simprlr 764 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  w  e.  X )
1817snssd 4160 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { w }  C_  X )
19 snnzg 4132 . . . . . . . . . . . . . 14  |-  ( w  e.  X  ->  { w }  =/=  (/) )
2017, 19syl 16 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  { w }  =/=  (/) )
21 neifil 20359 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  {
w }  C_  X  /\  { w }  =/=  (/) )  ->  ( ( nei `  J ) `  { w } )  e.  ( Fil `  X
) )
228, 18, 20, 21syl3anc 1229 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { w } )  e.  ( Fil `  X ) )
23 filfbas 20327 . . . . . . . . . . . 12  |-  ( ( ( nei `  J
) `  { w } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  {
w } )  e.  ( fBas `  X
) )
2422, 23syl 16 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { w } )  e.  (
fBas `  X )
)
25 fbunfip 20348 . . . . . . . . . . 11  |-  ( ( ( ( nei `  J
) `  { z } )  e.  (
fBas `  X )  /\  ( ( nei `  J
) `  { w } )  e.  (
fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) )  <->  A. u  e.  (
( nei `  J
) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) ) )
2616, 24, 25syl2anc 661 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  <->  A. u  e.  (
( nei `  J
) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) ) )
276neisspw 19586 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { z } )  C_  ~P X )
286neisspw 19586 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { w } )  C_  ~P X )
2927, 28unssd 3665 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X )
3029adantr 465 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) )  C_  ~P X )
3130a1d 25 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) )  C_  ~P X ) )
32 ssun1 3652 . . . . . . . . . . . . . 14  |-  ( ( nei `  J ) `
 { z } )  C_  ( (
( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )
33 filn0 20341 . . . . . . . . . . . . . . 15  |-  ( ( ( nei `  J
) `  { z } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  {
z } )  =/=  (/) )
3414, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( nei `  J
) `  { z } )  =/=  (/) )
35 ssn0 3804 . . . . . . . . . . . . . 14  |-  ( ( ( ( nei `  J
) `  { z } )  C_  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  /\  ( ( nei `  J
) `  { z } )  =/=  (/) )  -> 
( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) )  =/=  (/) )
3632, 34, 35sylancr 663 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) )  =/=  (/) )
3736a1d 25 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) )  =/=  (/) ) )
38 idd 24 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )
3931, 37, 383jcad 1178 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
406topopn 19393 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  X  e.  J )
4140adantr 465 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  ->  X  e.  J )
42 fsubbas 20346 . . . . . . . . . . . . 13  |-  ( X  e.  J  ->  (
( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
4341, 42syl 16 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
44 fgcl 20357 . . . . . . . . . . . . . . 15  |-  ( ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )
4544adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )
46 simplrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  z  =/=  w )
479adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  z  e.  X )
4817adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  w  e.  X )
49 fvex 5866 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( nei `  J ) `
 { z } )  e.  _V
50 fvex 5866 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( nei `  J ) `
 { w }
)  e.  _V
5149, 50unex 6583 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  e. 
_V
52 ssfii 7881 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  e. 
_V  ->  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) )  C_  ( fi `  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )
54 ssfg 20351 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  ->  ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) 
C_  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )
5554adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  ( fi `  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
5653, 55syl5ss 3500 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
5732, 56syl5ss 3500 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
( nei `  J
) `  { z } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
588adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  J  e.  (TopOn `  X )
)
59 elflim 20450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )  -> 
( z  e.  ( J  fLim  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( z  e.  X  /\  (
( nei `  J
) `  { z } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6058, 45, 59syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
z  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( z  e.  X  /\  (
( nei `  J
) `  { z } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6147, 57, 60mpbir2and 922 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) )
6256unssbd 3667 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
( nei `  J
) `  { w } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )
63 elflim 20450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) )  e.  ( Fil `  X ) )  -> 
( w  e.  ( J  fLim  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( w  e.  X  /\  (
( nei `  J
) `  { w } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6458, 45, 63syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
w  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  ( w  e.  X  /\  (
( nei `  J
) `  { w } )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
6548, 62, 64mpbir2and 922 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) )
66 eleq1 2515 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  (
x  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  z  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) ) )
67 eleq1 2515 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  (
x  e.  ( J 
fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  <->  w  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) ) )
6866, 67moi 3268 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  X  /\  w  e.  X
)  /\  E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) )  /\  ( z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )  /\  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )  ->  z  =  w )
69683com23 1203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  X  /\  w  e.  X
)  /\  ( z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )  /\  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) )  /\  E* x  x  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )  -> 
z  =  w )
70693expia 1199 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  X  /\  w  e.  X
)  /\  ( z  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) )  /\  w  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )  ->  ( E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) )  ->  z  =  w ) )
7147, 48, 61, 65, 70syl22anc 1230 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  ( E* x  x  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) )  ->  z  =  w ) )
7271necon3ad 2653 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  (
z  =/=  w  ->  -.  E* x  x  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
7346, 72mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  -.  E* x  x  e.  ( J  fLim  ( X
filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
74 oveq2 6289 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( J  fLim  f )  =  ( J  fLim  ( X filGen ( fi `  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) )
7574eleq2d 2513 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( x  e.  ( J  fLim  f
)  <->  x  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) ) ) ) )
7675mobidv 2291 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( E* x  x  e.  ( J  fLim  f )  <->  E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) ) ) )
7776notbid 294 . . . . . . . . . . . . . . 15  |-  ( f  =  ( X filGen ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  ( -.  E* x  x  e.  ( J  fLim  f )  <->  -.  E* x  x  e.  ( J  fLim  ( X filGen ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) ) ) ) ) )
7877rspcev 3196 . . . . . . . . . . . . . 14  |-  ( ( ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) )  e.  ( Fil `  X
)  /\  -.  E* x  x  e.  ( J  fLim  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { z } )  u.  ( ( nei `  J ) `
 { w }
) ) ) ) ) )  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) )
7945, 73, 78syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
) )  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) )
8079ex 434 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( fi `  ( ( ( nei `  J ) `  {
z } )  u.  ( ( nei `  J
) `  { w } ) ) )  e.  ( fBas `  X
)  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) ) )
8143, 80sylbird 235 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( ( ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  C_  ~P X  /\  (
( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) ) )  ->  E. f  e.  ( Fil `  X
)  -.  E* x  x  e.  ( J  fLim  f ) ) )
8239, 81syld 44 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { z } )  u.  (
( nei `  J
) `  { w } ) ) )  ->  E. f  e.  ( Fil `  X )  -.  E* x  x  e.  ( J  fLim  f ) ) )
8326, 82sylbird 235 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( A. u  e.  ( ( nei `  J
) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/)  ->  E. f  e.  ( Fil `  X )  -.  E* x  x  e.  ( J  fLim  f ) ) )
84 df-ne 2640 . . . . . . . . . . . . 13  |-  ( ( u  i^i  v )  =/=  (/)  <->  -.  ( u  i^i  v )  =  (/) )
8584ralbii 2874 . . . . . . . . . . . 12  |-  ( A. v  e.  ( ( nei `  J ) `  { w } ) ( u  i^i  v
)  =/=  (/)  <->  A. v  e.  ( ( nei `  J
) `  { w } )  -.  (
u  i^i  v )  =  (/) )
86 ralnex 2889 . . . . . . . . . . . 12  |-  ( A. v  e.  ( ( nei `  J ) `  { w } )  -.  ( u  i^i  v )  =  (/)  <->  -.  E. v  e.  ( ( nei `  J ) `
 { w }
) ( u  i^i  v )  =  (/) )
8785, 86bitri 249 . . . . . . . . . . 11  |-  ( A. v  e.  ( ( nei `  J ) `  { w } ) ( u  i^i  v
)  =/=  (/)  <->  -.  E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
8887ralbii 2874 . . . . . . . . . 10  |-  ( A. u  e.  ( ( nei `  J ) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) 
<-> 
A. u  e.  ( ( nei `  J
) `  { z } )  -.  E. v  e.  ( ( nei `  J ) `  { w } ) ( u  i^i  v
)  =  (/) )
89 ralnex 2889 . . . . . . . . . 10  |-  ( A. u  e.  ( ( nei `  J ) `  { z } )  -.  E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) 
<->  -.  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
9088, 89bitri 249 . . . . . . . . 9  |-  ( A. u  e.  ( ( nei `  J ) `  { z } ) A. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =/=  (/) 
<->  -.  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
91 rexnal 2891 . . . . . . . . 9  |-  ( E. f  e.  ( Fil `  X )  -.  E* x  x  e.  ( J  fLim  f )  <->  -.  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) )
9283, 90, 913imtr3g 269 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( -.  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/)  ->  -.  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) ) )
9392con4d 105 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  -> 
( A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f )  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) )
9493imp 429 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( ( z  e.  X  /\  w  e.  X )  /\  z  =/=  w ) )  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  E. u  e.  (
( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
9594an32s 804 . . . . 5  |-  ( ( ( J  e.  Top  /\ 
A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f
) )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  z  =/=  w ) )  ->  E. u  e.  (
( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) )
9695expr 615 . . . 4  |-  ( ( ( J  e.  Top  /\ 
A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f
) )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( z  =/=  w  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) )
9796ralrimivva 2864 . . 3  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  A. z  e.  X  A. w  e.  X  ( z  =/=  w  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) )
98 simpl 457 . . . . 5  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  J  e.  Top )
9998, 7sylib 196 . . . 4  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  J  e.  (TopOn `  X
) )
100 hausnei2 19832 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. z  e.  X  A. w  e.  X  ( z  =/=  w  ->  E. u  e.  ( ( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) ) )
10199, 100syl 16 . . 3  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  -> 
( J  e.  Haus  <->  A. z  e.  X  A. w  e.  X  (
z  =/=  w  ->  E. u  e.  (
( nei `  J
) `  { z } ) E. v  e.  ( ( nei `  J
) `  { w } ) ( u  i^i  v )  =  (/) ) ) )
10297, 101mpbird 232 . 2  |-  ( ( J  e.  Top  /\  A. f  e.  ( Fil `  X ) E* x  x  e.  ( J  fLim  f ) )  ->  J  e.  Haus )
1034, 102impbii 188 1  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. f  e.  ( Fil `  X
) E* x  x  e.  ( J  fLim  f ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   E*wmo 2269    =/= wne 2638   A.wral 2793   E.wrex 2794   _Vcvv 3095    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   ~Pcpw 3997   {csn 4014   U.cuni 4234   ` cfv 5578  (class class class)co 6281   ficfi 7872   fBascfbas 18385   filGencfg 18386   Topctop 19372  TopOnctopon 19373   neicnei 19576   Hauscha 19787   Filcfil 20324    fLim cflim 20413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fi 7873  df-fbas 18395  df-fg 18396  df-top 19377  df-topon 19380  df-nei 19577  df-haus 19794  df-fil 20325  df-flim 20418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator