MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauseqlcld Structured version   Unicode version

Theorem hauseqlcld 20273
Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
hauseqlcld.k  |-  ( ph  ->  K  e.  Haus )
hauseqlcld.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
hauseqlcld.g  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
hauseqlcld  |-  ( ph  ->  dom  ( F  i^i  G )  e.  ( Clsd `  J ) )

Proof of Theorem hauseqlcld
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauseqlcld.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 eqid 2457 . . . . . . . . . . 11  |-  U. J  =  U. J
3 eqid 2457 . . . . . . . . . . 11  |-  U. K  =  U. K
42, 3cnf 19874 . . . . . . . . . 10  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
51, 4syl 16 . . . . . . . . 9  |-  ( ph  ->  F : U. J --> U. K )
65ffvelrnda 6032 . . . . . . . 8  |-  ( (
ph  /\  b  e.  U. J )  ->  ( F `  b )  e.  U. K )
76biantrud 507 . . . . . . 7  |-  ( (
ph  /\  b  e.  U. J )  ->  ( <. ( F `  b
) ,  ( G `
 b ) >.  e.  _I  <->  ( <. ( F `  b ) ,  ( G `  b ) >.  e.  _I  /\  ( F `  b
)  e.  U. K
) ) )
8 fvex 5882 . . . . . . . . 9  |-  ( G `
 b )  e. 
_V
98ideq 5165 . . . . . . . 8  |-  ( ( F `  b )  _I  ( G `  b )  <->  ( F `  b )  =  ( G `  b ) )
10 df-br 4457 . . . . . . . 8  |-  ( ( F `  b )  _I  ( G `  b )  <->  <. ( F `
 b ) ,  ( G `  b
) >.  e.  _I  )
119, 10bitr3i 251 . . . . . . 7  |-  ( ( F `  b )  =  ( G `  b )  <->  <. ( F `
 b ) ,  ( G `  b
) >.  e.  _I  )
128opelres 5289 . . . . . . 7  |-  ( <.
( F `  b
) ,  ( G `
 b ) >.  e.  (  _I  |`  U. K
)  <->  ( <. ( F `  b ) ,  ( G `  b ) >.  e.  _I  /\  ( F `  b
)  e.  U. K
) )
137, 11, 123bitr4g 288 . . . . . 6  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( F `  b
)  =  ( G `
 b )  <->  <. ( F `
 b ) ,  ( G `  b
) >.  e.  (  _I  |`  U. K ) ) )
14 fveq2 5872 . . . . . . . . . 10  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
15 fveq2 5872 . . . . . . . . . 10  |-  ( a  =  b  ->  ( G `  a )  =  ( G `  b ) )
1614, 15opeq12d 4227 . . . . . . . . 9  |-  ( a  =  b  ->  <. ( F `  a ) ,  ( G `  a ) >.  =  <. ( F `  b ) ,  ( G `  b ) >. )
17 eqid 2457 . . . . . . . . 9  |-  ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
)  =  ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
)
18 opex 4720 . . . . . . . . 9  |-  <. ( F `  b ) ,  ( G `  b ) >.  e.  _V
1916, 17, 18fvmpt 5956 . . . . . . . 8  |-  ( b  e.  U. J  -> 
( ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) `  b )  =  <. ( F `  b ) ,  ( G `  b ) >. )
2019adantl 466 . . . . . . 7  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  =  <. ( F `  b ) ,  ( G `  b )
>. )
2120eleq1d 2526 . . . . . 6  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) `  b )  e.  (  _I  |`  U. K )  <->  <. ( F `  b
) ,  ( G `
 b ) >.  e.  (  _I  |`  U. K
) ) )
2213, 21bitr4d 256 . . . . 5  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( F `  b
)  =  ( G `
 b )  <->  ( (
a  e.  U. J  |-> 
<. ( F `  a
) ,  ( G `
 a ) >.
) `  b )  e.  (  _I  |`  U. K
) ) )
2322pm5.32da 641 . . . 4  |-  ( ph  ->  ( ( b  e. 
U. J  /\  ( F `  b )  =  ( G `  b ) )  <->  ( b  e.  U. J  /\  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  e.  (  _I  |`  U. K
) ) ) )
24 ffn 5737 . . . . . . . 8  |-  ( F : U. J --> U. K  ->  F  Fn  U. J
)
255, 24syl 16 . . . . . . 7  |-  ( ph  ->  F  Fn  U. J
)
26 hauseqlcld.g . . . . . . . . 9  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
272, 3cnf 19874 . . . . . . . . 9  |-  ( G  e.  ( J  Cn  K )  ->  G : U. J --> U. K
)
2826, 27syl 16 . . . . . . . 8  |-  ( ph  ->  G : U. J --> U. K )
29 ffn 5737 . . . . . . . 8  |-  ( G : U. J --> U. K  ->  G  Fn  U. J
)
3028, 29syl 16 . . . . . . 7  |-  ( ph  ->  G  Fn  U. J
)
31 fndmin 5995 . . . . . . 7  |-  ( ( F  Fn  U. J  /\  G  Fn  U. J
)  ->  dom  ( F  i^i  G )  =  { b  e.  U. J  |  ( F `  b )  =  ( G `  b ) } )
3225, 30, 31syl2anc 661 . . . . . 6  |-  ( ph  ->  dom  ( F  i^i  G )  =  { b  e.  U. J  | 
( F `  b
)  =  ( G `
 b ) } )
3332eleq2d 2527 . . . . 5  |-  ( ph  ->  ( b  e.  dom  ( F  i^i  G )  <-> 
b  e.  { b  e.  U. J  | 
( F `  b
)  =  ( G `
 b ) } ) )
34 rabid 3034 . . . . 5  |-  ( b  e.  { b  e. 
U. J  |  ( F `  b )  =  ( G `  b ) }  <->  ( b  e.  U. J  /\  ( F `  b )  =  ( G `  b ) ) )
3533, 34syl6bb 261 . . . 4  |-  ( ph  ->  ( b  e.  dom  ( F  i^i  G )  <-> 
( b  e.  U. J  /\  ( F `  b )  =  ( G `  b ) ) ) )
36 opex 4720 . . . . . 6  |-  <. ( F `  a ) ,  ( G `  a ) >.  e.  _V
3736, 17fnmpti 5715 . . . . 5  |-  ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
)  Fn  U. J
38 elpreima 6008 . . . . 5  |-  ( ( a  e.  U. J  |-> 
<. ( F `  a
) ,  ( G `
 a ) >.
)  Fn  U. J  ->  ( b  e.  ( `' ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) " (  _I  |`  U. K
) )  <->  ( b  e.  U. J  /\  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  e.  (  _I  |`  U. K
) ) ) )
3937, 38mp1i 12 . . . 4  |-  ( ph  ->  ( b  e.  ( `' ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) " (  _I  |`  U. K
) )  <->  ( b  e.  U. J  /\  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  e.  (  _I  |`  U. K
) ) ) )
4023, 35, 393bitr4d 285 . . 3  |-  ( ph  ->  ( b  e.  dom  ( F  i^i  G )  <-> 
b  e.  ( `' ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) " (  _I  |`  U. K ) ) ) )
4140eqrdv 2454 . 2  |-  ( ph  ->  dom  ( F  i^i  G )  =  ( `' ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) " (  _I  |`  U. K ) ) )
422, 17txcnmpt 20251 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( J  Cn  K ) )  -> 
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. )  e.  ( J  Cn  ( K  tX  K ) ) )
431, 26, 42syl2anc 661 . . 3  |-  ( ph  ->  ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. )  e.  ( J  Cn  ( K  tX  K ) ) )
44 hauseqlcld.k . . . 4  |-  ( ph  ->  K  e.  Haus )
453hausdiag 20272 . . . . 5  |-  ( K  e.  Haus  <->  ( K  e. 
Top  /\  (  _I  |` 
U. K )  e.  ( Clsd `  ( K  tX  K ) ) ) )
4645simprbi 464 . . . 4  |-  ( K  e.  Haus  ->  (  _I  |`  U. K )  e.  ( Clsd `  ( K  tX  K ) ) )
4744, 46syl 16 . . 3  |-  ( ph  ->  (  _I  |`  U. K
)  e.  ( Clsd `  ( K  tX  K
) ) )
48 cnclima 19896 . . 3  |-  ( ( ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. )  e.  ( J  Cn  ( K  tX  K ) )  /\  (  _I  |`  U. K
)  e.  ( Clsd `  ( K  tX  K
) ) )  -> 
( `' ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
) " (  _I  |`  U. K ) )  e.  ( Clsd `  J
) )
4943, 47, 48syl2anc 661 . 2  |-  ( ph  ->  ( `' ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
) " (  _I  |`  U. K ) )  e.  ( Clsd `  J
) )
5041, 49eqeltrd 2545 1  |-  ( ph  ->  dom  ( F  i^i  G )  e.  ( Clsd `  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811    i^i cin 3470   <.cop 4038   U.cuni 4251   class class class wbr 4456    |-> cmpt 4515    _I cid 4799   `'ccnv 5007   dom cdm 5008    |` cres 5010   "cima 5011    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296   Topctop 19521   Clsdccld 19644    Cn ccn 19852   Hauscha 19936    tX ctx 20187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-map 7440  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-cld 19647  df-cn 19855  df-haus 19943  df-tx 20189
This theorem is referenced by:  hauseqcn  28038  hausgraph  31376
  Copyright terms: Public domain W3C validator