MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausdiag Structured version   Visualization version   Unicode version

Theorem hausdiag 20737
Description: A topology is Hausdorff iff the diagonal set is closed in the topology's product with itself. EDITORIAL: very clumsy proof, can probably be shortened substantially. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
hausdiag.x  |-  X  = 
U. J
Assertion
Ref Expression
hausdiag  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  (  _I  |`  X )  e.  (
Clsd `  ( J  tX  J ) ) ) )

Proof of Theorem hausdiag
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hausdiag.x . . 3  |-  X  = 
U. J
21ishaus 20415 . 2  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. a  e.  X  A. b  e.  X  ( a  =/=  b  ->  E. c  e.  J  E. d  e.  J  ( a  e.  c  /\  b  e.  d  /\  (
c  i^i  d )  =  (/) ) ) ) )
3 txtop 20661 . . . . . 6  |-  ( ( J  e.  Top  /\  J  e.  Top )  ->  ( J  tX  J
)  e.  Top )
43anidms 657 . . . . 5  |-  ( J  e.  Top  ->  ( J  tX  J )  e. 
Top )
5 f1oi 5864 . . . . . . 7  |-  (  _I  |`  X ) : X -1-1-onto-> X
6 f1of 5828 . . . . . . 7  |-  ( (  _I  |`  X ) : X -1-1-onto-> X  ->  (  _I  |`  X ) : X --> X )
7 fssxp 5753 . . . . . . 7  |-  ( (  _I  |`  X ) : X --> X  ->  (  _I  |`  X )  C_  ( X  X.  X
) )
85, 6, 7mp2b 10 . . . . . 6  |-  (  _I  |`  X )  C_  ( X  X.  X )
91, 1txuni 20684 . . . . . . 7  |-  ( ( J  e.  Top  /\  J  e.  Top )  ->  ( X  X.  X
)  =  U. ( J  tX  J ) )
109anidms 657 . . . . . 6  |-  ( J  e.  Top  ->  ( X  X.  X )  = 
U. ( J  tX  J ) )
118, 10syl5sseq 3466 . . . . 5  |-  ( J  e.  Top  ->  (  _I  |`  X )  C_  U. ( J  tX  J
) )
12 eqid 2471 . . . . . 6  |-  U. ( J  tX  J )  = 
U. ( J  tX  J )
1312iscld2 20120 . . . . 5  |-  ( ( ( J  tX  J
)  e.  Top  /\  (  _I  |`  X ) 
C_  U. ( J  tX  J ) )  -> 
( (  _I  |`  X )  e.  ( Clsd `  ( J  tX  J ) )  <-> 
( U. ( J 
tX  J )  \ 
(  _I  |`  X ) )  e.  ( J 
tX  J ) ) )
144, 11, 13syl2anc 673 . . . 4  |-  ( J  e.  Top  ->  (
(  _I  |`  X )  e.  ( Clsd `  ( J  tX  J ) )  <-> 
( U. ( J 
tX  J )  \ 
(  _I  |`  X ) )  e.  ( J 
tX  J ) ) )
15 eltx 20660 . . . . 5  |-  ( ( J  e.  Top  /\  J  e.  Top )  ->  ( ( U. ( J  tX  J )  \ 
(  _I  |`  X ) )  e.  ( J 
tX  J )  <->  A. e  e.  ( U. ( J 
tX  J )  \ 
(  _I  |`  X ) ) E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) ) )
1615anidms 657 . . . 4  |-  ( J  e.  Top  ->  (
( U. ( J 
tX  J )  \ 
(  _I  |`  X ) )  e.  ( J 
tX  J )  <->  A. e  e.  ( U. ( J 
tX  J )  \ 
(  _I  |`  X ) ) E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) ) )
17 eldif 3400 . . . . . . . . . 10  |-  ( e  e.  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) )  <->  ( e  e. 
U. ( J  tX  J )  /\  -.  e  e.  (  _I  |`  X ) ) )
1810eqcomd 2477 . . . . . . . . . . . 12  |-  ( J  e.  Top  ->  U. ( J  tX  J )  =  ( X  X.  X
) )
1918eleq2d 2534 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  (
e  e.  U. ( J  tX  J )  <->  e  e.  ( X  X.  X
) ) )
2019anbi1d 719 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (
( e  e.  U. ( J  tX  J )  /\  -.  e  e.  (  _I  |`  X ) )  <->  ( e  e.  ( X  X.  X
)  /\  -.  e  e.  (  _I  |`  X ) ) ) )
2117, 20syl5bb 265 . . . . . . . . 9  |-  ( J  e.  Top  ->  (
e  e.  ( U. ( J  tX  J ) 
\  (  _I  |`  X ) )  <->  ( e  e.  ( X  X.  X
)  /\  -.  e  e.  (  _I  |`  X ) ) ) )
2221imbi1d 324 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( e  e.  ( U. ( J  tX  J )  \  (  _I  |`  X ) )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d )  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) )  <->  ( ( e  e.  ( X  X.  X )  /\  -.  e  e.  (  _I  |`  X ) )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d )  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) ) ) )
23 impexp 453 . . . . . . . 8  |-  ( ( ( e  e.  ( X  X.  X )  /\  -.  e  e.  (  _I  |`  X ) )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) )  <->  ( e  e.  ( X  X.  X
)  ->  ( -.  e  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) ) ) )
2422, 23syl6bb 269 . . . . . . 7  |-  ( J  e.  Top  ->  (
( e  e.  ( U. ( J  tX  J )  \  (  _I  |`  X ) )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d )  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) )  <->  ( e  e.  ( X  X.  X
)  ->  ( -.  e  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) ) ) ) )
2524ralbidv2 2827 . . . . . 6  |-  ( J  e.  Top  ->  ( A. e  e.  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) E. c  e.  J  E. d  e.  J  (
e  e.  ( c  X.  d )  /\  ( c  X.  d
)  C_  ( U. ( J  tX  J ) 
\  (  _I  |`  X ) ) )  <->  A. e  e.  ( X  X.  X
) ( -.  e  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d )  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) ) ) )
26 eleq1 2537 . . . . . . . . 9  |-  ( e  =  <. a ,  b
>.  ->  ( e  e.  (  _I  |`  X )  <->  <. a ,  b >.  e.  (  _I  |`  X ) ) )
2726notbid 301 . . . . . . . 8  |-  ( e  =  <. a ,  b
>.  ->  ( -.  e  e.  (  _I  |`  X )  <->  -.  <. a ,  b
>.  e.  (  _I  |`  X ) ) )
28 eleq1 2537 . . . . . . . . . 10  |-  ( e  =  <. a ,  b
>.  ->  ( e  e.  ( c  X.  d
)  <->  <. a ,  b
>.  e.  ( c  X.  d ) ) )
2928anbi1d 719 . . . . . . . . 9  |-  ( e  =  <. a ,  b
>.  ->  ( ( e  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) )  <->  ( <. a ,  b >.  e.  ( c  X.  d )  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) ) )
30292rexbidv 2897 . . . . . . . 8  |-  ( e  =  <. a ,  b
>.  ->  ( E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) )  <->  E. c  e.  J  E. d  e.  J  ( <. a ,  b
>.  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) ) ) )
3127, 30imbi12d 327 . . . . . . 7  |-  ( e  =  <. a ,  b
>.  ->  ( ( -.  e  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) )  <->  ( -.  <. a ,  b >.  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( <. a ,  b
>.  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) ) ) ) )
3231ralxp 4981 . . . . . 6  |-  ( A. e  e.  ( X  X.  X ) ( -.  e  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( e  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) )  <->  A. a  e.  X  A. b  e.  X  ( -.  <. a ,  b >.  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( <. a ,  b
>.  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) ) ) )
3325, 32syl6bb 269 . . . . 5  |-  ( J  e.  Top  ->  ( A. e  e.  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) E. c  e.  J  E. d  e.  J  (
e  e.  ( c  X.  d )  /\  ( c  X.  d
)  C_  ( U. ( J  tX  J ) 
\  (  _I  |`  X ) ) )  <->  A. a  e.  X  A. b  e.  X  ( -.  <.
a ,  b >.  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( <. a ,  b
>.  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) ) ) ) )
34 vex 3034 . . . . . . . . . . 11  |-  b  e. 
_V
3534opelres 5116 . . . . . . . . . 10  |-  ( <.
a ,  b >.  e.  (  _I  |`  X )  <-> 
( <. a ,  b
>.  e.  _I  /\  a  e.  X ) )
36 df-br 4396 . . . . . . . . . . . 12  |-  ( a  _I  b  <->  <. a ,  b >.  e.  _I  )
3734ideq 4992 . . . . . . . . . . . 12  |-  ( a  _I  b  <->  a  =  b )
3836, 37bitr3i 259 . . . . . . . . . . 11  |-  ( <.
a ,  b >.  e.  _I  <->  a  =  b )
39 iba 511 . . . . . . . . . . . 12  |-  ( a  e.  X  ->  ( <. a ,  b >.  e.  _I  <->  ( <. a ,  b >.  e.  _I  /\  a  e.  X
) ) )
4039adantr 472 . . . . . . . . . . 11  |-  ( ( a  e.  X  /\  b  e.  X )  ->  ( <. a ,  b
>.  e.  _I  <->  ( <. a ,  b >.  e.  _I  /\  a  e.  X
) ) )
4138, 40syl5rbbr 268 . . . . . . . . . 10  |-  ( ( a  e.  X  /\  b  e.  X )  ->  ( ( <. a ,  b >.  e.  _I  /\  a  e.  X
)  <->  a  =  b ) )
4235, 41syl5bb 265 . . . . . . . . 9  |-  ( ( a  e.  X  /\  b  e.  X )  ->  ( <. a ,  b
>.  e.  (  _I  |`  X )  <-> 
a  =  b ) )
4342adantl 473 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  ->  ( <. a ,  b >.  e.  (  _I  |`  X )  <-> 
a  =  b ) )
4443necon3bbid 2680 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  ->  ( -.  <. a ,  b
>.  e.  (  _I  |`  X )  <-> 
a  =/=  b ) )
45 elssuni 4219 . . . . . . . . . . . . . . . 16  |-  ( c  e.  J  ->  c  C_ 
U. J )
46 elssuni 4219 . . . . . . . . . . . . . . . 16  |-  ( d  e.  J  ->  d  C_ 
U. J )
47 xpss12 4945 . . . . . . . . . . . . . . . 16  |-  ( ( c  C_  U. J  /\  d  C_  U. J )  ->  ( c  X.  d )  C_  ( U. J  X.  U. J
) )
4845, 46, 47syl2an 485 . . . . . . . . . . . . . . 15  |-  ( ( c  e.  J  /\  d  e.  J )  ->  ( c  X.  d
)  C_  ( U. J  X.  U. J ) )
491, 1xpeq12i 4861 . . . . . . . . . . . . . . 15  |-  ( X  X.  X )  =  ( U. J  X.  U. J )
5048, 49syl6sseqr 3465 . . . . . . . . . . . . . 14  |-  ( ( c  e.  J  /\  d  e.  J )  ->  ( c  X.  d
)  C_  ( X  X.  X ) )
5150adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( c  X.  d )  C_  ( X  X.  X ) )
5210ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( X  X.  X )  =  U. ( J  tX  J ) )
5351, 52sseqtrd 3454 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( c  X.  d )  C_  U. ( J  tX  J ) )
54 reldisj 3812 . . . . . . . . . . . 12  |-  ( ( c  X.  d ) 
C_  U. ( J  tX  J )  ->  (
( ( c  X.  d )  i^i  (  _I  |`  X ) )  =  (/)  <->  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) ) )
5553, 54syl 17 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
( c  X.  d
)  i^i  (  _I  |`  X ) )  =  (/) 
<->  ( c  X.  d
)  C_  ( U. ( J  tX  J ) 
\  (  _I  |`  X ) ) ) )
56 df-res 4851 . . . . . . . . . . . . . . 15  |-  (  _I  |`  X )  =  (  _I  i^i  ( X  X.  _V ) )
5756ineq2i 3622 . . . . . . . . . . . . . 14  |-  ( ( c  X.  d )  i^i  (  _I  |`  X ) )  =  ( ( c  X.  d )  i^i  (  _I  i^i  ( X  X.  _V )
) )
58 inass 3633 . . . . . . . . . . . . . . 15  |-  ( ( ( c  X.  d
)  i^i  _I  )  i^i  ( X  X.  _V ) )  =  ( ( c  X.  d
)  i^i  (  _I  i^i  ( X  X.  _V ) ) )
59 inss1 3643 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  X.  d )  i^i  _I  )  C_  ( c  X.  d
)
6059, 51syl5ss 3429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
c  X.  d )  i^i  _I  )  C_  ( X  X.  X
) )
61 ssv 3438 . . . . . . . . . . . . . . . . . 18  |-  X  C_  _V
62 xpss2 4949 . . . . . . . . . . . . . . . . . 18  |-  ( X 
C_  _V  ->  ( X  X.  X )  C_  ( X  X.  _V )
)
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( X  X.  X )  C_  ( X  X.  _V )
6460, 63syl6ss 3430 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
c  X.  d )  i^i  _I  )  C_  ( X  X.  _V )
)
65 df-ss 3404 . . . . . . . . . . . . . . . 16  |-  ( ( ( c  X.  d
)  i^i  _I  )  C_  ( X  X.  _V ) 
<->  ( ( ( c  X.  d )  i^i 
_I  )  i^i  ( X  X.  _V ) )  =  ( ( c  X.  d )  i^i 
_I  ) )
6664, 65sylib 201 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
( c  X.  d
)  i^i  _I  )  i^i  ( X  X.  _V ) )  =  ( ( c  X.  d
)  i^i  _I  )
)
6758, 66syl5eqr 2519 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
c  X.  d )  i^i  (  _I  i^i  ( X  X.  _V )
) )  =  ( ( c  X.  d
)  i^i  _I  )
)
6857, 67syl5eq 2517 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
c  X.  d )  i^i  (  _I  |`  X ) )  =  ( ( c  X.  d )  i^i  _I  ) )
6968eqeq1d 2473 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
( c  X.  d
)  i^i  (  _I  |`  X ) )  =  (/) 
<->  ( ( c  X.  d )  i^i  _I  )  =  (/) ) )
70 opelxp 4869 . . . . . . . . . . . . . . . 16  |-  ( <.
a ,  a >.  e.  ( c  X.  d
)  <->  ( a  e.  c  /\  a  e.  d ) )
71 df-br 4396 . . . . . . . . . . . . . . . 16  |-  ( a ( c  X.  d
) a  <->  <. a ,  a >.  e.  (
c  X.  d ) )
72 elin 3608 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( c  i^i  d )  <->  ( a  e.  c  /\  a  e.  d ) )
7370, 71, 723bitr4i 285 . . . . . . . . . . . . . . 15  |-  ( a ( c  X.  d
) a  <->  a  e.  ( c  i^i  d
) )
7473notbii 303 . . . . . . . . . . . . . 14  |-  ( -.  a ( c  X.  d ) a  <->  -.  a  e.  ( c  i^i  d
) )
7574albii 1699 . . . . . . . . . . . . 13  |-  ( A. a  -.  a ( c  X.  d ) a  <->  A. a  -.  a  e.  ( c  i^i  d
) )
76 intirr 5224 . . . . . . . . . . . . 13  |-  ( ( ( c  X.  d
)  i^i  _I  )  =  (/)  <->  A. a  -.  a
( c  X.  d
) a )
77 eq0 3738 . . . . . . . . . . . . 13  |-  ( ( c  i^i  d )  =  (/)  <->  A. a  -.  a  e.  ( c  i^i  d
) )
7875, 76, 773bitr4i 285 . . . . . . . . . . . 12  |-  ( ( ( c  X.  d
)  i^i  _I  )  =  (/)  <->  ( c  i^i  d )  =  (/) )
7969, 78syl6bb 269 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
( c  X.  d
)  i^i  (  _I  |`  X ) )  =  (/) 
<->  ( c  i^i  d
)  =  (/) ) )
8055, 79bitr3d 263 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) )  <->  ( c  i^i  d )  =  (/) ) )
8180anbi2d 718 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( (
( a  e.  c  /\  b  e.  d )  /\  ( c  X.  d )  C_  ( U. ( J  tX  J )  \  (  _I  |`  X ) ) )  <->  ( ( a  e.  c  /\  b  e.  d )  /\  (
c  i^i  d )  =  (/) ) ) )
82 opelxp 4869 . . . . . . . . . 10  |-  ( <.
a ,  b >.  e.  ( c  X.  d
)  <->  ( a  e.  c  /\  b  e.  d ) )
8382anbi1i 709 . . . . . . . . 9  |-  ( (
<. a ,  b >.  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) )  <-> 
( ( a  e.  c  /\  b  e.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) ) )
84 df-3an 1009 . . . . . . . . 9  |-  ( ( a  e.  c  /\  b  e.  d  /\  ( c  i^i  d
)  =  (/) )  <->  ( (
a  e.  c  /\  b  e.  d )  /\  ( c  i^i  d
)  =  (/) ) )
8581, 83, 843bitr4g 296 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  /\  (
c  e.  J  /\  d  e.  J )
)  ->  ( ( <. a ,  b >.  e.  ( c  X.  d
)  /\  ( c  X.  d )  C_  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) )  <-> 
( a  e.  c  /\  b  e.  d  /\  ( c  i^i  d )  =  (/) ) ) )
86852rexbidva 2896 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  ->  ( E. c  e.  J  E. d  e.  J  ( <. a ,  b
>.  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) )  <->  E. c  e.  J  E. d  e.  J  ( a  e.  c  /\  b  e.  d  /\  (
c  i^i  d )  =  (/) ) ) )
8744, 86imbi12d 327 . . . . . 6  |-  ( ( J  e.  Top  /\  ( a  e.  X  /\  b  e.  X
) )  ->  (
( -.  <. a ,  b >.  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( <. a ,  b
>.  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) ) )  <->  ( a  =/=  b  ->  E. c  e.  J  E. d  e.  J  ( a  e.  c  /\  b  e.  d  /\  (
c  i^i  d )  =  (/) ) ) ) )
88872ralbidva 2831 . . . . 5  |-  ( J  e.  Top  ->  ( A. a  e.  X  A. b  e.  X  ( -.  <. a ,  b >.  e.  (  _I  |`  X )  ->  E. c  e.  J  E. d  e.  J  ( <. a ,  b
>.  e.  ( c  X.  d )  /\  (
c  X.  d ) 
C_  ( U. ( J  tX  J )  \ 
(  _I  |`  X ) ) ) )  <->  A. a  e.  X  A. b  e.  X  ( a  =/=  b  ->  E. c  e.  J  E. d  e.  J  ( a  e.  c  /\  b  e.  d  /\  (
c  i^i  d )  =  (/) ) ) ) )
8933, 88bitrd 261 . . . 4  |-  ( J  e.  Top  ->  ( A. e  e.  ( U. ( J  tX  J
)  \  (  _I  |`  X ) ) E. c  e.  J  E. d  e.  J  (
e  e.  ( c  X.  d )  /\  ( c  X.  d
)  C_  ( U. ( J  tX  J ) 
\  (  _I  |`  X ) ) )  <->  A. a  e.  X  A. b  e.  X  ( a  =/=  b  ->  E. c  e.  J  E. d  e.  J  ( a  e.  c  /\  b  e.  d  /\  (
c  i^i  d )  =  (/) ) ) ) )
9014, 16, 893bitrrd 288 . . 3  |-  ( J  e.  Top  ->  ( A. a  e.  X  A. b  e.  X  ( a  =/=  b  ->  E. c  e.  J  E. d  e.  J  ( a  e.  c  /\  b  e.  d  /\  ( c  i^i  d )  =  (/) ) )  <->  (  _I  |`  X )  e.  (
Clsd `  ( J  tX  J ) ) ) )
9190pm5.32i 649 . 2  |-  ( ( J  e.  Top  /\  A. a  e.  X  A. b  e.  X  (
a  =/=  b  ->  E. c  e.  J  E. d  e.  J  ( a  e.  c  /\  b  e.  d  /\  ( c  i^i  d )  =  (/) ) ) )  <->  ( J  e.  Top  /\  (  _I  |`  X )  e.  (
Clsd `  ( J  tX  J ) ) ) )
922, 91bitri 257 1  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  (  _I  |`  X )  e.  (
Clsd `  ( J  tX  J ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    \ cdif 3387    i^i cin 3389    C_ wss 3390   (/)c0 3722   <.cop 3965   U.cuni 4190   class class class wbr 4395    _I cid 4749    X. cxp 4837    |` cres 4841   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   Topctop 19994   Clsdccld 20108   Hauscha 20401    tX ctx 20652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-cld 20111  df-haus 20408  df-tx 20654
This theorem is referenced by:  hauseqlcld  20738  tgphaus  21209  qtophaus  28737
  Copyright terms: Public domain W3C validator