MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunx Structured version   Unicode version

Theorem hashunx 12434
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 12430. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashunx  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( # `
 ( A  u.  B ) )  =  ( ( # `  A
) +e (
# `  B )
) )

Proof of Theorem hashunx
StepHypRef Expression
1 hashun 12430 . . . . . 6  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( # `  ( A  u.  B
) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
213expa 1196 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  =  (/) )  -> 
( # `  ( A  u.  B ) )  =  ( ( # `  A )  +  (
# `  B )
) )
3 hashcl 12408 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
43nn0red 10865 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( # `
 A )  e.  RR )
5 hashcl 12408 . . . . . . . . . 10  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
65nn0red 10865 . . . . . . . . 9  |-  ( B  e.  Fin  ->  ( # `
 B )  e.  RR )
74, 6anim12i 566 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  e.  RR  /\  ( # `  B )  e.  RR ) )
87adantr 465 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  =  (/) )  -> 
( ( # `  A
)  e.  RR  /\  ( # `  B )  e.  RR ) )
9 rexadd 11443 . . . . . . 7  |-  ( ( ( # `  A
)  e.  RR  /\  ( # `  B )  e.  RR )  -> 
( ( # `  A
) +e (
# `  B )
)  =  ( (
# `  A )  +  ( # `  B
) ) )
108, 9syl 16 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  =  (/) )  -> 
( ( # `  A
) +e (
# `  B )
)  =  ( (
# `  A )  +  ( # `  B
) ) )
1110eqcomd 2475 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  =  (/) )  -> 
( ( # `  A
)  +  ( # `  B ) )  =  ( ( # `  A
) +e (
# `  B )
) )
122, 11eqtrd 2508 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  =  (/) )  -> 
( # `  ( A  u.  B ) )  =  ( ( # `  A ) +e
( # `  B ) ) )
1312expcom 435 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( # `  ( A  u.  B )
)  =  ( (
# `  A ) +e ( # `  B ) ) ) )
14133ad2ant3 1019 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  (
( A  e.  Fin  /\  B  e.  Fin )  ->  ( # `  ( A  u.  B )
)  =  ( (
# `  A ) +e ( # `  B ) ) ) )
15 unexg 6596 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
16 unfir 7800 . . . . . . 7  |-  ( ( A  u.  B )  e.  Fin  ->  ( A  e.  Fin  /\  B  e.  Fin ) )
1716con3i 135 . . . . . 6  |-  ( -.  ( A  e.  Fin  /\  B  e.  Fin )  ->  -.  ( A  u.  B )  e.  Fin )
18 hashinf 12390 . . . . . 6  |-  ( ( ( A  u.  B
)  e.  _V  /\  -.  ( A  u.  B
)  e.  Fin )  ->  ( # `  ( A  u.  B )
)  = +oo )
1915, 17, 18syl2anr 478 . . . . 5  |-  ( ( -.  ( A  e. 
Fin  /\  B  e.  Fin )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( # `  ( A  u.  B )
)  = +oo )
20 ianor 488 . . . . . . 7  |-  ( -.  ( A  e.  Fin  /\  B  e.  Fin )  <->  ( -.  A  e.  Fin  \/ 
-.  B  e.  Fin ) )
21 simprl 755 . . . . . . . . . . 11  |-  ( ( -.  A  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  A  e.  V )
22 simprr 756 . . . . . . . . . . 11  |-  ( ( -.  A  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  B  e.  W )
23 hashnfinnn0 12412 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( # `  A
)  e/  NN0 )
2423ex 434 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( -.  A  e.  Fin  ->  ( # `  A
)  e/  NN0 ) )
2524adantr 465 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  A  e. 
Fin  ->  ( # `  A
)  e/  NN0 ) )
2625impcom 430 . . . . . . . . . . 11  |-  ( ( -.  A  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  ( # `
 A )  e/  NN0 )
27 hashinfxadd 12433 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( # `  A )  e/  NN0 )  -> 
( ( # `  A
) +e (
# `  B )
)  = +oo )
2821, 22, 26, 27syl3anc 1228 . . . . . . . . . 10  |-  ( ( -.  A  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( # `  A ) +e ( # `  B ) )  = +oo )
2928eqcomd 2475 . . . . . . . . 9  |-  ( ( -.  A  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  -> +oo  =  ( ( # `  A
) +e (
# `  B )
) )
3029ex 434 . . . . . . . 8  |-  ( -.  A  e.  Fin  ->  ( ( A  e.  V  /\  B  e.  W
)  -> +oo  =  ( ( # `  A
) +e (
# `  B )
) ) )
31 hashxrcl 12409 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  ( # `
 A )  e. 
RR* )
32 hashxrcl 12409 . . . . . . . . . . . . . 14  |-  ( B  e.  W  ->  ( # `
 B )  e. 
RR* )
3331, 32anim12i 566 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( # `  A
)  e.  RR*  /\  ( # `
 B )  e. 
RR* ) )
3433adantl 466 . . . . . . . . . . . 12  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( # `  A )  e.  RR*  /\  ( # `
 B )  e. 
RR* ) )
35 xaddcom 11449 . . . . . . . . . . . 12  |-  ( ( ( # `  A
)  e.  RR*  /\  ( # `
 B )  e. 
RR* )  ->  (
( # `  A ) +e ( # `  B ) )  =  ( ( # `  B
) +e (
# `  A )
) )
3634, 35syl 16 . . . . . . . . . . 11  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( # `  A ) +e ( # `  B ) )  =  ( ( # `  B
) +e (
# `  A )
) )
37 simprr 756 . . . . . . . . . . . 12  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  B  e.  W )
38 simprl 755 . . . . . . . . . . . 12  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  A  e.  V )
39 hashnfinnn0 12412 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  W  /\  -.  B  e.  Fin )  ->  ( # `  B
)  e/  NN0 )
4039ex 434 . . . . . . . . . . . . . 14  |-  ( B  e.  W  ->  ( -.  B  e.  Fin  ->  ( # `  B
)  e/  NN0 ) )
4140adantl 466 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  B  e. 
Fin  ->  ( # `  B
)  e/  NN0 ) )
4241impcom 430 . . . . . . . . . . . 12  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  ( # `
 B )  e/  NN0 )
43 hashinfxadd 12433 . . . . . . . . . . . 12  |-  ( ( B  e.  W  /\  A  e.  V  /\  ( # `  B )  e/  NN0 )  -> 
( ( # `  B
) +e (
# `  A )
)  = +oo )
4437, 38, 42, 43syl3anc 1228 . . . . . . . . . . 11  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( # `  B ) +e ( # `  A ) )  = +oo )
4536, 44eqtrd 2508 . . . . . . . . . 10  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( # `  A ) +e ( # `  B ) )  = +oo )
4645eqcomd 2475 . . . . . . . . 9  |-  ( ( -.  B  e.  Fin  /\  ( A  e.  V  /\  B  e.  W
) )  -> +oo  =  ( ( # `  A
) +e (
# `  B )
) )
4746ex 434 . . . . . . . 8  |-  ( -.  B  e.  Fin  ->  ( ( A  e.  V  /\  B  e.  W
)  -> +oo  =  ( ( # `  A
) +e (
# `  B )
) ) )
4830, 47jaoi 379 . . . . . . 7  |-  ( ( -.  A  e.  Fin  \/ 
-.  B  e.  Fin )  ->  ( ( A  e.  V  /\  B  e.  W )  -> +oo  =  ( ( # `  A
) +e (
# `  B )
) ) )
4920, 48sylbi 195 . . . . . 6  |-  ( -.  ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( A  e.  V  /\  B  e.  W )  -> +oo  =  ( ( # `  A
) +e (
# `  B )
) ) )
5049imp 429 . . . . 5  |-  ( ( -.  ( A  e. 
Fin  /\  B  e.  Fin )  /\  ( A  e.  V  /\  B  e.  W )
)  -> +oo  =  ( ( # `  A
) +e (
# `  B )
) )
5119, 50eqtrd 2508 . . . 4  |-  ( ( -.  ( A  e. 
Fin  /\  B  e.  Fin )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( # `  ( A  u.  B )
)  =  ( (
# `  A ) +e ( # `  B ) ) )
5251expcom 435 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  ( A  e.  Fin  /\  B  e.  Fin )  ->  ( # `
 ( A  u.  B ) )  =  ( ( # `  A
) +e (
# `  B )
) ) )
53523adant3 1016 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( -.  ( A  e.  Fin  /\  B  e.  Fin )  ->  ( # `  ( A  u.  B )
)  =  ( (
# `  A ) +e ( # `  B ) ) ) )
5414, 53pm2.61d 158 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( # `
 ( A  u.  B ) )  =  ( ( # `  A
) +e (
# `  B )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    e/ wnel 2663   _Vcvv 3118    u. cun 3479    i^i cin 3480   (/)c0 3790   ` cfv 5594  (class class class)co 6295   Fincfn 7528   RRcr 9503    + caddc 9507   +oocpnf 9637   RR*cxr 9639   NN0cn0 10807   +ecxad 11328   #chash 12385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-xadd 11331  df-hash 12386
This theorem is referenced by:  vdgrun  24724
  Copyright terms: Public domain W3C validator