MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun Structured version   Unicode version

Theorem hashun 12414
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( # `  ( A  u.  B
) )  =  ( ( # `  A
)  +  ( # `  B ) ) )

Proof of Theorem hashun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ficardun 8578 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( card `  ( A  u.  B
) )  =  ( ( card `  A
)  +o  ( card `  B ) ) )
21fveq2d 5868 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  B ) ) ) )
3 unfi 7783 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
4 eqid 2467 . . . . 5  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )
54hashgval 12372 . . . 4  |-  ( ( A  u.  B )  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B ) ) )  =  ( # `  ( A  u.  B )
) )
63, 5syl 16 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B )
) )  =  (
# `  ( A  u.  B ) ) )
763adant3 1016 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B
) ) )  =  ( # `  ( A  u.  B )
) )
8 ficardom 8338 . . . . 5  |-  ( A  e.  Fin  ->  ( card `  A )  e. 
om )
9 ficardom 8338 . . . . 5  |-  ( B  e.  Fin  ->  ( card `  B )  e. 
om )
104hashgadd 12409 . . . . 5  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  B )  e.  om )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  B
) ) )  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) ) ) )
118, 9, 10syl2an 477 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  B ) ) )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  +  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) ) )
124hashgval 12372 . . . . 5  |-  ( A  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  =  ( # `  A
) )
134hashgval 12372 . . . . 5  |-  ( B  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) )  =  ( # `  B
) )
1412, 13oveqan12d 6301 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) ) )  =  ( (
# `  A )  +  ( # `  B
) ) )
1511, 14eqtrd 2508 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  B ) ) )  =  ( ( # `  A )  +  (
# `  B )
) )
16153adant3 1016 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  B
) ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
172, 7, 163eqtr3d 2516 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( # `  ( A  u.  B
) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474    i^i cin 3475   (/)c0 3785    |-> cmpt 4505    |` cres 5001   ` cfv 5586  (class class class)co 6282   omcom 6678   reccrdg 7072    +o coa 7124   Fincfn 7513   cardccrd 8312   0cc0 9488   1c1 9489    + caddc 9491   #chash 12369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-hash 12370
This theorem is referenced by:  hashun2  12415  hashun3  12416  hashunx  12418  hashunsng  12423  hashssdif  12436  hashxplem  12453  hashfun  12457  hashbclem  12463  hashf1lem2  12467  climcndslem1  13620  climcndslem2  13621  phiprmpw  14161  prmreclem5  14293  4sqlem11  14328  ppidif  23165  mumul  23183  ppiub  23207  lgsquadlem2  23358  lgsquadlem3  23359  cusgrasizeinds  24152  vdgrfiun  24578  numclwwlk3lem  24785  ballotlemgun  28103  ballotth  28116  subfacp1lem1  28263  subfacp1lem6  28269  eldioph2lem1  30297
  Copyright terms: Public domain W3C validator