MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun Structured version   Unicode version

Theorem hashun 12500
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( # `  ( A  u.  B
) )  =  ( ( # `  A
)  +  ( # `  B ) ) )

Proof of Theorem hashun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ficardun 8616 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( card `  ( A  u.  B
) )  =  ( ( card `  A
)  +o  ( card `  B ) ) )
21fveq2d 5855 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  B ) ) ) )
3 unfi 7823 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
4 eqid 2404 . . . . 5  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )
54hashgval 12457 . . . 4  |-  ( ( A  u.  B )  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B ) ) )  =  ( # `  ( A  u.  B )
) )
63, 5syl 17 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B )
) )  =  (
# `  ( A  u.  B ) ) )
763adant3 1019 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( A  u.  B
) ) )  =  ( # `  ( A  u.  B )
) )
8 ficardom 8376 . . . . 5  |-  ( A  e.  Fin  ->  ( card `  A )  e. 
om )
9 ficardom 8376 . . . . 5  |-  ( B  e.  Fin  ->  ( card `  B )  e. 
om )
104hashgadd 12495 . . . . 5  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  B )  e.  om )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  B
) ) )  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) ) ) )
118, 9, 10syl2an 477 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  B ) ) )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  +  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) ) )
124hashgval 12457 . . . . 5  |-  ( A  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  =  ( # `  A
) )
134hashgval 12457 . . . . 5  |-  ( B  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) )  =  ( # `  B
) )
1412, 13oveqan12d 6299 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) ) )  =  ( (
# `  A )  +  ( # `  B
) ) )
1511, 14eqtrd 2445 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  B ) ) )  =  ( ( # `  A )  +  (
# `  B )
) )
16153adant3 1019 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  B
) ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
172, 7, 163eqtr3d 2453 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( # `  ( A  u.  B
) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   _Vcvv 3061    u. cun 3414    i^i cin 3415   (/)c0 3740    |-> cmpt 4455    |` cres 4827   ` cfv 5571  (class class class)co 6280   omcom 6685   reccrdg 7114    +o coa 7166   Fincfn 7556   cardccrd 8350   0cc0 9524   1c1 9525    + caddc 9527   #chash 12454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-card 8354  df-cda 8582  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-n0 10839  df-z 10908  df-uz 11130  df-hash 12455
This theorem is referenced by:  hashun2  12501  hashun3  12502  hashunx  12504  hashunsng  12510  hashssdif  12526  hashxplem  12542  hashfun  12546  hashbclem  12552  hashf1lem2  12556  climcndslem1  13814  climcndslem2  13815  phiprmpw  14517  prmreclem5  14649  4sqlem11  14684  ppidif  23820  mumul  23838  ppiub  23862  lgsquadlem2  24013  lgsquadlem3  24014  cusgrasizeinds  24905  vdgrfiun  25331  numclwwlk3lem  25537  ballotlemgun  28982  ballotth  28995  subfacp1lem1  29489  subfacp1lem6  29495  eldioph2lem1  35067
  Copyright terms: Public domain W3C validator