MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashtpg Structured version   Unicode version

Theorem hashtpg 12182
Description: The size of an unordered triple of three different elements. (Contributed by Alexander van der Vekens, 10-Nov-2017.)
Assertion
Ref Expression
hashtpg  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  <->  ( # `  { A ,  B ,  C } )  =  3 ) )

Proof of Theorem hashtpg
StepHypRef Expression
1 simpl3 988 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  C  e.  _V )
2 prfi 7582 . . . . . . 7  |-  { A ,  B }  e.  Fin
32a1i 11 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  { A ,  B }  e.  Fin )
4 elprg 3890 . . . . . . . . . . . . . . . 16  |-  ( C  e.  _V  ->  ( C  e.  { A ,  B }  <->  ( C  =  A  \/  C  =  B ) ) )
5 orcom 387 . . . . . . . . . . . . . . . . 17  |-  ( ( C  =  A  \/  C  =  B )  <->  ( C  =  B  \/  C  =  A )
)
6 nne 2610 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  B  =/=  C  <->  B  =  C )
7 eqcom 2443 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  C  <->  C  =  B )
86, 7bitri 249 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  B  =/=  C  <->  C  =  B )
98bicomi 202 . . . . . . . . . . . . . . . . . 18  |-  ( C  =  B  <->  -.  B  =/=  C )
10 nne 2610 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  C  =/=  A  <->  C  =  A )
1110bicomi 202 . . . . . . . . . . . . . . . . . 18  |-  ( C  =  A  <->  -.  C  =/=  A )
129, 11orbi12i 518 . . . . . . . . . . . . . . . . 17  |-  ( ( C  =  B  \/  C  =  A )  <->  ( -.  B  =/=  C  \/  -.  C  =/=  A
) )
135, 12bitri 249 . . . . . . . . . . . . . . . 16  |-  ( ( C  =  A  \/  C  =  B )  <->  ( -.  B  =/=  C  \/  -.  C  =/=  A
) )
144, 13syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( C  e.  _V  ->  ( C  e.  { A ,  B }  <->  ( -.  B  =/=  C  \/  -.  C  =/=  A ) ) )
1514biimpd 207 . . . . . . . . . . . . . 14  |-  ( C  e.  _V  ->  ( C  e.  { A ,  B }  ->  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
16153ad2ant3 1006 . . . . . . . . . . . . 13  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( C  e.  { A ,  B }  ->  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
1716imp 429 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  C  e.  { A ,  B } )  -> 
( -.  B  =/= 
C  \/  -.  C  =/=  A ) )
1817olcd 393 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  C  e.  { A ,  B } )  -> 
( -.  A  =/= 
B  \/  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
1918ex 434 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( C  e.  { A ,  B }  ->  ( -.  A  =/=  B  \/  ( -.  B  =/= 
C  \/  -.  C  =/=  A ) ) ) )
20 3orass 963 . . . . . . . . . 10  |-  ( ( -.  A  =/=  B  \/  -.  B  =/=  C  \/  -.  C  =/=  A
)  <->  ( -.  A  =/=  B  \/  ( -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
2119, 20syl6ibr 227 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( C  e.  { A ,  B }  ->  ( -.  A  =/=  B  \/  -.  B  =/=  C  \/  -.  C  =/=  A
) ) )
22 3ianor 977 . . . . . . . . 9  |-  ( -.  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  <->  ( -.  A  =/=  B  \/  -.  B  =/=  C  \/  -.  C  =/=  A ) )
2321, 22syl6ibr 227 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( C  e.  { A ,  B }  ->  -.  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) ) )
2423con2d 115 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  ->  -.  C  e.  { A ,  B } ) )
2524imp 429 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  -.  C  e.  { A ,  B } )
26 hashunsng 12150 . . . . . . 7  |-  ( C  e.  _V  ->  (
( { A ,  B }  e.  Fin  /\ 
-.  C  e.  { A ,  B }
)  ->  ( # `  ( { A ,  B }  u.  { C } ) )  =  ( (
# `  { A ,  B } )  +  1 ) ) )
2726imp 429 . . . . . 6  |-  ( ( C  e.  _V  /\  ( { A ,  B }  e.  Fin  /\  -.  C  e.  { A ,  B } ) )  ->  ( # `  ( { A ,  B }  u.  { C } ) )  =  ( (
# `  { A ,  B } )  +  1 ) )
281, 3, 25, 27syl12anc 1211 . . . . 5  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  ( # `
 ( { A ,  B }  u.  { C } ) )  =  ( ( # `  { A ,  B }
)  +  1 ) )
29 simpr1 989 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  A  =/=  B )
30 3simpa 980 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A  e.  _V  /\  B  e.  _V ) )
3130adantr 462 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  ( A  e.  _V  /\  B  e.  _V ) )
32 hashprg 12151 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  =/=  B  <->  (
# `  { A ,  B } )  =  2 ) )
3331, 32syl 16 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  ( A  =/=  B  <->  ( # `  { A ,  B }
)  =  2 ) )
3429, 33mpbid 210 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  ( # `
 { A ,  B } )  =  2 )
3534oveq1d 6105 . . . . 5  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  (
( # `  { A ,  B } )  +  1 )  =  ( 2  +  1 ) )
3628, 35eqtrd 2473 . . . 4  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  ( # `
 ( { A ,  B }  u.  { C } ) )  =  ( 2  +  1 ) )
37 df-tp 3879 . . . . 5  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
3837fveq2i 5691 . . . 4  |-  ( # `  { A ,  B ,  C } )  =  ( # `  ( { A ,  B }  u.  { C } ) )
39 df-3 10377 . . . 4  |-  3  =  ( 2  +  1 )
4036, 38, 393eqtr4g 2498 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) )  ->  ( # `
 { A ,  B ,  C }
)  =  3 )
4140ex 434 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  ->  ( # `  { A ,  B ,  C } )  =  3 ) )
42 nne 2610 . . . . . . 7  |-  ( -.  A  =/=  B  <->  A  =  B )
43 hashprlei 12173 . . . . . . . . . 10  |-  ( { B ,  C }  e.  Fin  /\  ( # `  { B ,  C } )  <_  2
)
44 prfi 7582 . . . . . . . . . . . . . . 15  |-  { B ,  C }  e.  Fin
45 hashcl 12122 . . . . . . . . . . . . . . . 16  |-  ( { B ,  C }  e.  Fin  ->  ( # `  { B ,  C }
)  e.  NN0 )
4645nn0zd 10741 . . . . . . . . . . . . . . 15  |-  ( { B ,  C }  e.  Fin  ->  ( # `  { B ,  C }
)  e.  ZZ )
4744, 46ax-mp 5 . . . . . . . . . . . . . 14  |-  ( # `  { B ,  C } )  e.  ZZ
48 2z 10674 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
49 zleltp1 10691 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <_  2  <->  ( # `  { B ,  C }
)  <  ( 2  +  1 ) ) )
50 2p1e3 10441 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  1 )  =  3
5150a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  +  1 )  =  3 )
5251breq2d 4301 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <  ( 2  +  1 )  <->  ( # `  { B ,  C }
)  <  3 ) )
5352biimpd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <  ( 2  +  1 )  -> 
( # `  { B ,  C } )  <  3 ) )
5449, 53sylbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { B ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { B ,  C }
)  <_  2  ->  (
# `  { B ,  C } )  <  3 ) )
5547, 48, 54mp2an 667 . . . . . . . . . . . . 13  |-  ( (
# `  { B ,  C } )  <_ 
2  ->  ( # `  { B ,  C }
)  <  3 )
5645nn0red 10633 . . . . . . . . . . . . . . 15  |-  ( { B ,  C }  e.  Fin  ->  ( # `  { B ,  C }
)  e.  RR )
5744, 56ax-mp 5 . . . . . . . . . . . . . 14  |-  ( # `  { B ,  C } )  e.  RR
58 3re 10391 . . . . . . . . . . . . . 14  |-  3  e.  RR
5957, 58ltnei 9494 . . . . . . . . . . . . 13  |-  ( (
# `  { B ,  C } )  <  3  ->  3  =/=  ( # `  { B ,  C } ) )
6055, 59syl 16 . . . . . . . . . . . 12  |-  ( (
# `  { B ,  C } )  <_ 
2  ->  3  =/=  ( # `  { B ,  C } ) )
6160necomd 2693 . . . . . . . . . . 11  |-  ( (
# `  { B ,  C } )  <_ 
2  ->  ( # `  { B ,  C }
)  =/=  3 )
6261adantl 463 . . . . . . . . . 10  |-  ( ( { B ,  C }  e.  Fin  /\  ( # `
 { B ,  C } )  <_  2
)  ->  ( # `  { B ,  C }
)  =/=  3 )
6343, 62ax-mp 5 . . . . . . . . 9  |-  ( # `  { B ,  C } )  =/=  3
6463a1i 11 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `
 { B ,  C } )  =/=  3
)
65 tpeq1 3960 . . . . . . . . . . 11  |-  ( A  =  B  ->  { A ,  B ,  C }  =  { B ,  B ,  C } )
66 tpidm12 3973 . . . . . . . . . . 11  |-  { B ,  B ,  C }  =  { B ,  C }
6765, 66syl6req 2490 . . . . . . . . . 10  |-  ( A  =  B  ->  { B ,  C }  =  { A ,  B ,  C } )
6867fveq2d 5692 . . . . . . . . 9  |-  ( A  =  B  ->  ( # `
 { B ,  C } )  =  (
# `  { A ,  B ,  C }
) )
6968neeq1d 2619 . . . . . . . 8  |-  ( A  =  B  ->  (
( # `  { B ,  C } )  =/=  3  <->  ( # `  { A ,  B ,  C } )  =/=  3
) )
7064, 69syl5ib 219 . . . . . . 7  |-  ( A  =  B  ->  (
( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
7142, 70sylbi 195 . . . . . 6  |-  ( -.  A  =/=  B  -> 
( ( A  e. 
_V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
72 hashprlei 12173 . . . . . . . . . 10  |-  ( { A ,  C }  e.  Fin  /\  ( # `  { A ,  C } )  <_  2
)
73 prfi 7582 . . . . . . . . . . . . . . 15  |-  { A ,  C }  e.  Fin
74 hashcl 12122 . . . . . . . . . . . . . . . 16  |-  ( { A ,  C }  e.  Fin  ->  ( # `  { A ,  C }
)  e.  NN0 )
7574nn0zd 10741 . . . . . . . . . . . . . . 15  |-  ( { A ,  C }  e.  Fin  ->  ( # `  { A ,  C }
)  e.  ZZ )
7673, 75ax-mp 5 . . . . . . . . . . . . . 14  |-  ( # `  { A ,  C } )  e.  ZZ
77 zleltp1 10691 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <_  2  <->  ( # `  { A ,  C }
)  <  ( 2  +  1 ) ) )
7850a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  +  1 )  =  3 )
7978breq2d 4301 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <  ( 2  +  1 )  <->  ( # `  { A ,  C }
)  <  3 ) )
8079biimpd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <  ( 2  +  1 )  -> 
( # `  { A ,  C } )  <  3 ) )
8177, 80sylbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { A ,  C }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  C }
)  <_  2  ->  (
# `  { A ,  C } )  <  3 ) )
8276, 48, 81mp2an 667 . . . . . . . . . . . . 13  |-  ( (
# `  { A ,  C } )  <_ 
2  ->  ( # `  { A ,  C }
)  <  3 )
8374nn0red 10633 . . . . . . . . . . . . . . 15  |-  ( { A ,  C }  e.  Fin  ->  ( # `  { A ,  C }
)  e.  RR )
8473, 83ax-mp 5 . . . . . . . . . . . . . 14  |-  ( # `  { A ,  C } )  e.  RR
8584, 58ltnei 9494 . . . . . . . . . . . . 13  |-  ( (
# `  { A ,  C } )  <  3  ->  3  =/=  ( # `  { A ,  C } ) )
8682, 85syl 16 . . . . . . . . . . . 12  |-  ( (
# `  { A ,  C } )  <_ 
2  ->  3  =/=  ( # `  { A ,  C } ) )
8786necomd 2693 . . . . . . . . . . 11  |-  ( (
# `  { A ,  C } )  <_ 
2  ->  ( # `  { A ,  C }
)  =/=  3 )
8887adantl 463 . . . . . . . . . 10  |-  ( ( { A ,  C }  e.  Fin  /\  ( # `
 { A ,  C } )  <_  2
)  ->  ( # `  { A ,  C }
)  =/=  3 )
8972, 88ax-mp 5 . . . . . . . . 9  |-  ( # `  { A ,  C } )  =/=  3
9089a1i 11 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `
 { A ,  C } )  =/=  3
)
91 tpeq2 3961 . . . . . . . . . . 11  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  C ,  C } )
92 tpidm23 3975 . . . . . . . . . . 11  |-  { A ,  C ,  C }  =  { A ,  C }
9391, 92syl6req 2490 . . . . . . . . . 10  |-  ( B  =  C  ->  { A ,  C }  =  { A ,  B ,  C } )
9493fveq2d 5692 . . . . . . . . 9  |-  ( B  =  C  ->  ( # `
 { A ,  C } )  =  (
# `  { A ,  B ,  C }
) )
9594neeq1d 2619 . . . . . . . 8  |-  ( B  =  C  ->  (
( # `  { A ,  C } )  =/=  3  <->  ( # `  { A ,  B ,  C } )  =/=  3
) )
9690, 95syl5ib 219 . . . . . . 7  |-  ( B  =  C  ->  (
( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
976, 96sylbi 195 . . . . . 6  |-  ( -.  B  =/=  C  -> 
( ( A  e. 
_V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
98 hashprlei 12173 . . . . . . . . . 10  |-  ( { A ,  B }  e.  Fin  /\  ( # `  { A ,  B } )  <_  2
)
99 hashcl 12122 . . . . . . . . . . . . . . . 16  |-  ( { A ,  B }  e.  Fin  ->  ( # `  { A ,  B }
)  e.  NN0 )
10099nn0zd 10741 . . . . . . . . . . . . . . 15  |-  ( { A ,  B }  e.  Fin  ->  ( # `  { A ,  B }
)  e.  ZZ )
1012, 100ax-mp 5 . . . . . . . . . . . . . 14  |-  ( # `  { A ,  B } )  e.  ZZ
102 zleltp1 10691 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <_  2  <->  ( # `  { A ,  B }
)  <  ( 2  +  1 ) ) )
10350a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  +  1 )  =  3 )
104103breq2d 4301 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <  ( 2  +  1 )  <->  ( # `  { A ,  B }
)  <  3 ) )
105104biimpd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <  ( 2  +  1 )  -> 
( # `  { A ,  B } )  <  3 ) )
106102, 105sylbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( # `  { A ,  B }
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( # `  { A ,  B }
)  <_  2  ->  (
# `  { A ,  B } )  <  3 ) )
107101, 48, 106mp2an 667 . . . . . . . . . . . . 13  |-  ( (
# `  { A ,  B } )  <_ 
2  ->  ( # `  { A ,  B }
)  <  3 )
10899nn0red 10633 . . . . . . . . . . . . . . 15  |-  ( { A ,  B }  e.  Fin  ->  ( # `  { A ,  B }
)  e.  RR )
1092, 108ax-mp 5 . . . . . . . . . . . . . 14  |-  ( # `  { A ,  B } )  e.  RR
110109, 58ltnei 9494 . . . . . . . . . . . . 13  |-  ( (
# `  { A ,  B } )  <  3  ->  3  =/=  ( # `  { A ,  B } ) )
111107, 110syl 16 . . . . . . . . . . . 12  |-  ( (
# `  { A ,  B } )  <_ 
2  ->  3  =/=  ( # `  { A ,  B } ) )
112111necomd 2693 . . . . . . . . . . 11  |-  ( (
# `  { A ,  B } )  <_ 
2  ->  ( # `  { A ,  B }
)  =/=  3 )
113112adantl 463 . . . . . . . . . 10  |-  ( ( { A ,  B }  e.  Fin  /\  ( # `
 { A ,  B } )  <_  2
)  ->  ( # `  { A ,  B }
)  =/=  3 )
11498, 113ax-mp 5 . . . . . . . . 9  |-  ( # `  { A ,  B } )  =/=  3
115114a1i 11 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `
 { A ,  B } )  =/=  3
)
116 tpeq3 3962 . . . . . . . . . . 11  |-  ( C  =  A  ->  { A ,  B ,  C }  =  { A ,  B ,  A } )
117 tpidm13 3974 . . . . . . . . . . 11  |-  { A ,  B ,  A }  =  { A ,  B }
118116, 117syl6req 2490 . . . . . . . . . 10  |-  ( C  =  A  ->  { A ,  B }  =  { A ,  B ,  C } )
119118fveq2d 5692 . . . . . . . . 9  |-  ( C  =  A  ->  ( # `
 { A ,  B } )  =  (
# `  { A ,  B ,  C }
) )
120119neeq1d 2619 . . . . . . . 8  |-  ( C  =  A  ->  (
( # `  { A ,  B } )  =/=  3  <->  ( # `  { A ,  B ,  C } )  =/=  3
) )
121115, 120syl5ib 219 . . . . . . 7  |-  ( C  =  A  ->  (
( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
12210, 121sylbi 195 . . . . . 6  |-  ( -.  C  =/=  A  -> 
( ( A  e. 
_V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
12371, 97, 1223jaoi 1276 . . . . 5  |-  ( ( -.  A  =/=  B  \/  -.  B  =/=  C  \/  -.  C  =/=  A
)  ->  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V )  ->  ( # `
 { A ,  B ,  C }
)  =/=  3 ) )
12422, 123sylbi 195 . . . 4  |-  ( -.  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  ->  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V )  ->  ( # `
 { A ,  B ,  C }
)  =/=  3 ) )
125124com12 31 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( -.  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  ->  ( # `  { A ,  B ,  C } )  =/=  3
) )
126125necon4bd 2671 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( # `  { A ,  B ,  C }
)  =  3  -> 
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) ) )
12741, 126impbid 191 1  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
)  <->  ( # `  { A ,  B ,  C } )  =  3 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 959    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   _Vcvv 2970    u. cun 3323   {csn 3874   {cpr 3876   {ctp 3878   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   Fincfn 7306   RRcr 9277   1c1 9279    + caddc 9281    < clt 9414    <_ cle 9415   2c2 10367   3c3 10368   ZZcz 10642   #chash 12099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-hash 12100
This theorem is referenced by:  hashge3el3dif  12183  constr3lem2  23467
  Copyright terms: Public domain W3C validator