MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnemnf Structured version   Unicode version

Theorem hashnemnf 12374
Description: The size of a set is never minus infinity. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashnemnf  |-  ( A  e.  V  ->  ( # `
 A )  =/= -oo )

Proof of Theorem hashnemnf
StepHypRef Expression
1 hashnn0pnf 12372 . 2  |-  ( A  e.  V  ->  (
( # `  A )  e.  NN0  \/  ( # `
 A )  = +oo ) )
2 mnfnre 9627 . . . . . 6  |- -oo  e/  RR
3 df-nel 2660 . . . . . . 7  |-  ( -oo  e/  RR  <->  -. -oo  e.  RR )
4 nn0re 10795 . . . . . . . 8  |-  ( -oo  e.  NN0  -> -oo  e.  RR )
54con3i 135 . . . . . . 7  |-  ( -. -oo  e.  RR  ->  -. -oo  e.  NN0 )
63, 5sylbi 195 . . . . . 6  |-  ( -oo  e/  RR  ->  -. -oo  e.  NN0 )
72, 6ax-mp 5 . . . . 5  |-  -. -oo  e.  NN0
8 eleq1 2534 . . . . 5  |-  ( (
# `  A )  = -oo  ->  ( ( # `
 A )  e. 
NN0 
<-> -oo  e.  NN0 )
)
97, 8mtbiri 303 . . . 4  |-  ( (
# `  A )  = -oo  ->  -.  ( # `
 A )  e. 
NN0 )
109necon2ai 2697 . . 3  |-  ( (
# `  A )  e.  NN0  ->  ( # `  A
)  =/= -oo )
11 pnfnemnf 11317 . . . 4  |- +oo  =/= -oo
12 neeq1 2743 . . . 4  |-  ( (
# `  A )  = +oo  ->  ( ( # `
 A )  =/= -oo 
<-> +oo  =/= -oo )
)
1311, 12mpbiri 233 . . 3  |-  ( (
# `  A )  = +oo  ->  ( # `  A
)  =/= -oo )
1410, 13jaoi 379 . 2  |-  ( ( ( # `  A
)  e.  NN0  \/  ( # `  A )  = +oo )  -> 
( # `  A )  =/= -oo )
151, 14syl 16 1  |-  ( A  e.  V  ->  ( # `
 A )  =/= -oo )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    = wceq 1374    e. wcel 1762    =/= wne 2657    e/ wnel 2658   ` cfv 5581   RRcr 9482   +oocpnf 9616   -oocmnf 9617   NN0cn0 10786   #chash 12362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-card 8311  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-n0 10787  df-z 10856  df-uz 11074  df-hash 12363
This theorem is referenced by:  hashinfxadd  12410  vdgrun  24565
  Copyright terms: Public domain W3C validator