MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgval Structured version   Unicode version

Theorem hashgval 12411
Description: The value of the  # function in terms of the mapping  G from  om to  NN0. The proof avoids the use of ax-ac 8856. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypothesis
Ref Expression
hashgval.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
Assertion
Ref Expression
hashgval  |-  ( A  e.  Fin  ->  ( G `  ( card `  A ) )  =  ( # `  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    G( x)

Proof of Theorem hashgval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resundir 5298 . . . . . 6  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )  |`  Fin )  =  ( ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  u.  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )
)
2 eqid 2457 . . . . . . . . . 10  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )
3 eqid 2457 . . . . . . . . . 10  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )
42, 3hashkf 12410 . . . . . . . . 9  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card ) : Fin --> NN0
5 ffn 5737 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card ) : Fin --> NN0  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  Fn  Fin )
6 fnresdm 5696 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  Fn  Fin  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card ) )
74, 5, 6mp2b 10 . . . . . . . 8  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )
8 incom 3687 . . . . . . . . . 10  |-  ( ( _V  \  Fin )  i^i  Fin )  =  ( Fin  i^i  ( _V 
\  Fin ) )
9 disjdif 3903 . . . . . . . . . 10  |-  ( Fin 
i^i  ( _V  \  Fin ) )  =  (/)
108, 9eqtri 2486 . . . . . . . . 9  |-  ( ( _V  \  Fin )  i^i  Fin )  =  (/)
11 pnfex 11347 . . . . . . . . . . 11  |- +oo  e.  _V
1211fconst 5777 . . . . . . . . . 10  |-  ( ( _V  \  Fin )  X.  { +oo } ) : ( _V  \  Fin ) --> { +oo }
13 ffn 5737 . . . . . . . . . 10  |-  ( ( ( _V  \  Fin )  X.  { +oo }
) : ( _V 
\  Fin ) --> { +oo }  ->  ( ( _V 
\  Fin )  X.  { +oo } )  Fn  ( _V  \  Fin ) )
14 fnresdisj 5697 . . . . . . . . . 10  |-  ( ( ( _V  \  Fin )  X.  { +oo }
)  Fn  ( _V 
\  Fin )  ->  (
( ( _V  \  Fin )  i^i  Fin )  =  (/)  <->  ( ( ( _V  \  Fin )  X.  { +oo } )  |`  Fin )  =  (/) ) )
1512, 13, 14mp2b 10 . . . . . . . . 9  |-  ( ( ( _V  \  Fin )  i^i  Fin )  =  (/) 
<->  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )  =  (/) )
1610, 15mpbi 208 . . . . . . . 8  |-  ( ( ( _V  \  Fin )  X.  { +oo }
)  |`  Fin )  =  (/)
177, 16uneq12i 3652 . . . . . . 7  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  u.  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )
)  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  u.  (/) )
18 un0 3819 . . . . . . 7  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  u.  (/) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )
1917, 18eqtri 2486 . . . . . 6  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  u.  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )
201, 19eqtri 2486 . . . . 5  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )  |`  Fin )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )
21 df-hash 12409 . . . . . 6  |-  #  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )
2221reseq1i 5279 . . . . 5  |-  ( #  |` 
Fin )  =  ( ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )  |`  Fin )
23 hashgval.1 . . . . . 6  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
2423coeq1i 5172 . . . . 5  |-  ( G  o.  card )  =  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )
2520, 22, 243eqtr4i 2496 . . . 4  |-  ( #  |` 
Fin )  =  ( G  o.  card )
2625fveq1i 5873 . . 3  |-  ( (
#  |`  Fin ) `  A )  =  ( ( G  o.  card ) `  A )
27 cardf2 8341 . . . . 5  |-  card : {
x  |  E. y  e.  On  y  ~~  x }
--> On
28 ffun 5739 . . . . 5  |-  ( card
: { x  |  E. y  e.  On  y  ~~  x } --> On  ->  Fun 
card )
2927, 28ax-mp 5 . . . 4  |-  Fun  card
30 finnum 8346 . . . 4  |-  ( A  e.  Fin  ->  A  e.  dom  card )
31 fvco 5949 . . . 4  |-  ( ( Fun  card  /\  A  e. 
dom  card )  ->  (
( G  o.  card ) `  A )  =  ( G `  ( card `  A )
) )
3229, 30, 31sylancr 663 . . 3  |-  ( A  e.  Fin  ->  (
( G  o.  card ) `  A )  =  ( G `  ( card `  A )
) )
3326, 32syl5eq 2510 . 2  |-  ( A  e.  Fin  ->  (
( #  |`  Fin ) `  A )  =  ( G `  ( card `  A ) ) )
34 fvres 5886 . 2  |-  ( A  e.  Fin  ->  (
( #  |`  Fin ) `  A )  =  (
# `  A )
)
3533, 34eqtr3d 2500 1  |-  ( A  e.  Fin  ->  ( G `  ( card `  A ) )  =  ( # `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1395    e. wcel 1819   {cab 2442   E.wrex 2808   _Vcvv 3109    \ cdif 3468    u. cun 3469    i^i cin 3470   (/)c0 3793   {csn 4032   class class class wbr 4456    |-> cmpt 4515   Oncon0 4887    X. cxp 5006   dom cdm 5008    |` cres 5010    o. ccom 5012   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296   omcom 6699   reccrdg 7093    ~~ cen 7532   Fincfn 7535   cardccrd 8333   0cc0 9509   1c1 9510    + caddc 9512   +oocpnf 9642   NN0cn0 10816   #chash 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-hash 12409
This theorem is referenced by:  hashginv  12412  hashfz1  12422  hashen  12423  hashcard  12430  hashcl  12431  hashgval2  12449  hashdom  12450  hashun  12453  fz1isolem  12514
  Copyright terms: Public domain W3C validator