MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el Structured version   Unicode version

Theorem hashgt12el 12463
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b )
Distinct variable groups:    W, a    V, a, b
Allowed substitution hint:    W( b)

Proof of Theorem hashgt12el
StepHypRef Expression
1 hash0 12419 . . . 4  |-  ( # `  (/) )  =  0
2 fveq2 5856 . . . 4  |-  ( (/)  =  V  ->  ( # `  (/) )  =  (
# `  V )
)
31, 2syl5eqr 2498 . . 3  |-  ( (/)  =  V  ->  0  =  ( # `  V
) )
4 breq2 4441 . . . . . . . 8  |-  ( (
# `  V )  =  0  ->  (
1  <  ( # `  V
)  <->  1  <  0
) )
54biimpd 207 . . . . . . 7  |-  ( (
# `  V )  =  0  ->  (
1  <  ( # `  V
)  ->  1  <  0 ) )
65eqcoms 2455 . . . . . 6  |-  ( 0  =  ( # `  V
)  ->  ( 1  <  ( # `  V
)  ->  1  <  0 ) )
7 0le1 10083 . . . . . . 7  |-  0  <_  1
8 0re 9599 . . . . . . . . 9  |-  0  e.  RR
9 1re 9598 . . . . . . . . 9  |-  1  e.  RR
108, 9lenlti 9707 . . . . . . . 8  |-  ( 0  <_  1  <->  -.  1  <  0 )
11 pm2.21 108 . . . . . . . 8  |-  ( -.  1  <  0  -> 
( 1  <  0  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
1210, 11sylbi 195 . . . . . . 7  |-  ( 0  <_  1  ->  (
1  <  0  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
137, 12ax-mp 5 . . . . . 6  |-  ( 1  <  0  ->  E. a  e.  V  E. b  e.  V  a  =/=  b )
146, 13syl6com 35 . . . . 5  |-  ( 1  <  ( # `  V
)  ->  ( 0  =  ( # `  V
)  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
1514adantl 466 . . . 4  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  (
0  =  ( # `  V )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
1615com12 31 . . 3  |-  ( 0  =  ( # `  V
)  ->  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
173, 16syl 16 . 2  |-  ( (/)  =  V  ->  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
18 df-ne 2640 . . . 4  |-  ( (/)  =/=  V  <->  -.  (/)  =  V )
19 necom 2712 . . . 4  |-  ( (/)  =/=  V  <->  V  =/=  (/) )
2018, 19bitr3i 251 . . 3  |-  ( -.  (/)  =  V  <->  V  =/=  (/) )
21 ralnex 2889 . . . . . . . 8  |-  ( A. a  e.  V  -.  E. b  e.  V  a  =/=  b  <->  -.  E. a  e.  V  E. b  e.  V  a  =/=  b )
22 ralnex 2889 . . . . . . . . . 10  |-  ( A. b  e.  V  -.  a  =/=  b  <->  -.  E. b  e.  V  a  =/=  b )
23 nne 2644 . . . . . . . . . . . 12  |-  ( -.  a  =/=  b  <->  a  =  b )
24 equcom 1780 . . . . . . . . . . . 12  |-  ( a  =  b  <->  b  =  a )
2523, 24bitri 249 . . . . . . . . . . 11  |-  ( -.  a  =/=  b  <->  b  =  a )
2625ralbii 2874 . . . . . . . . . 10  |-  ( A. b  e.  V  -.  a  =/=  b  <->  A. b  e.  V  b  =  a )
2722, 26bitr3i 251 . . . . . . . . 9  |-  ( -. 
E. b  e.  V  a  =/=  b  <->  A. b  e.  V  b  =  a )
2827ralbii 2874 . . . . . . . 8  |-  ( A. a  e.  V  -.  E. b  e.  V  a  =/=  b  <->  A. a  e.  V  A. b  e.  V  b  =  a )
2921, 28bitr3i 251 . . . . . . 7  |-  ( -. 
E. a  e.  V  E. b  e.  V  a  =/=  b  <->  A. a  e.  V  A. b  e.  V  b  =  a )
30 eqsn 4176 . . . . . . . . . . . 12  |-  ( V  =/=  (/)  ->  ( V  =  { a }  <->  A. b  e.  V  b  =  a ) )
3130adantl 466 . . . . . . . . . . 11  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( V  =  { a } 
<-> 
A. b  e.  V  b  =  a )
)
3231bicomd 201 . . . . . . . . . 10  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. b  e.  V  b  =  a  <->  V  =  { a } ) )
3332ralbidv 2882 . . . . . . . . 9  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  A. b  e.  V  b  =  a  <->  A. a  e.  V  V  =  { a } ) )
34 fveq2 5856 . . . . . . . . . . . . 13  |-  ( V  =  { a }  ->  ( # `  V
)  =  ( # `  { a } ) )
35 hashsnlei 12460 . . . . . . . . . . . . . 14  |-  ( { a }  e.  Fin  /\  ( # `  {
a } )  <_ 
1 )
3635simpri 462 . . . . . . . . . . . . 13  |-  ( # `  { a } )  <_  1
3734, 36syl6eqbr 4474 . . . . . . . . . . . 12  |-  ( V  =  { a }  ->  ( # `  V
)  <_  1 )
3837a1i 11 . . . . . . . . . . 11  |-  ( ( V  e.  W  /\  a  e.  V )  ->  ( V  =  {
a }  ->  ( # `
 V )  <_ 
1 ) )
3938reximdva0 3782 . . . . . . . . . 10  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  E. a  e.  V  ( V  =  { a }  ->  (
# `  V )  <_  1 ) )
40 r19.36av 2991 . . . . . . . . . 10  |-  ( E. a  e.  V  ( V  =  { a }  ->  ( # `  V
)  <_  1 )  ->  ( A. a  e.  V  V  =  { a }  ->  (
# `  V )  <_  1 ) )
4139, 40syl 16 . . . . . . . . 9  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  V  =  { a }  ->  ( # `  V
)  <_  1 ) )
4233, 41sylbid 215 . . . . . . . 8  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  A. b  e.  V  b  =  a  ->  (
# `  V )  <_  1 ) )
43 hashxrcl 12411 . . . . . . . . . 10  |-  ( V  e.  W  ->  ( # `
 V )  e. 
RR* )
4443adantr 465 . . . . . . . . 9  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( # `
 V )  e. 
RR* )
459rexri 9649 . . . . . . . . 9  |-  1  e.  RR*
46 xrlenlt 9655 . . . . . . . . 9  |-  ( ( ( # `  V
)  e.  RR*  /\  1  e.  RR* )  ->  (
( # `  V )  <_  1  <->  -.  1  <  ( # `  V
) ) )
4744, 45, 46sylancl 662 . . . . . . . 8  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  (
( # `  V )  <_  1  <->  -.  1  <  ( # `  V
) ) )
4842, 47sylibd 214 . . . . . . 7  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  A. b  e.  V  b  =  a  ->  -.  1  <  ( # `  V ) ) )
4929, 48syl5bi 217 . . . . . 6  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( -.  E. a  e.  V  E. b  e.  V  a  =/=  b  ->  -.  1  <  ( # `  V
) ) )
5049con4d 105 . . . . 5  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  (
1  <  ( # `  V
)  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5150impancom 440 . . . 4  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  ( V  =/=  (/)  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5251com12 31 . . 3  |-  ( V  =/=  (/)  ->  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5320, 52sylbi 195 . 2  |-  ( -.  (/)  =  V  ->  (
( V  e.  W  /\  1  <  ( # `  V ) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5417, 53pm2.61i 164 1  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   (/)c0 3770   {csn 4014   class class class wbr 4437   ` cfv 5578   Fincfn 7518   0cc0 9495   1c1 9496   RR*cxr 9630    < clt 9631    <_ cle 9632   #chash 12387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-hash 12388
This theorem is referenced by:  ring1ne0  17218  frgrawopreglem5  25026
  Copyright terms: Public domain W3C validator