MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el Structured version   Unicode version

Theorem hashgt12el 12599
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b )
Distinct variable groups:    W, a    V, a, b
Allowed substitution hint:    W( b)

Proof of Theorem hashgt12el
StepHypRef Expression
1 hash0 12554 . . . 4  |-  ( # `  (/) )  =  0
2 fveq2 5881 . . . 4  |-  ( (/)  =  V  ->  ( # `  (/) )  =  (
# `  V )
)
31, 2syl5eqr 2477 . . 3  |-  ( (/)  =  V  ->  0  =  ( # `  V
) )
4 breq2 4427 . . . . . . . 8  |-  ( (
# `  V )  =  0  ->  (
1  <  ( # `  V
)  <->  1  <  0
) )
54biimpd 210 . . . . . . 7  |-  ( (
# `  V )  =  0  ->  (
1  <  ( # `  V
)  ->  1  <  0 ) )
65eqcoms 2434 . . . . . 6  |-  ( 0  =  ( # `  V
)  ->  ( 1  <  ( # `  V
)  ->  1  <  0 ) )
7 0le1 10144 . . . . . . 7  |-  0  <_  1
8 0re 9650 . . . . . . . . 9  |-  0  e.  RR
9 1re 9649 . . . . . . . . 9  |-  1  e.  RR
108, 9lenlti 9761 . . . . . . . 8  |-  ( 0  <_  1  <->  -.  1  <  0 )
11 pm2.21 111 . . . . . . . 8  |-  ( -.  1  <  0  -> 
( 1  <  0  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
1210, 11sylbi 198 . . . . . . 7  |-  ( 0  <_  1  ->  (
1  <  0  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
137, 12ax-mp 5 . . . . . 6  |-  ( 1  <  0  ->  E. a  e.  V  E. b  e.  V  a  =/=  b )
146, 13syl6com 36 . . . . 5  |-  ( 1  <  ( # `  V
)  ->  ( 0  =  ( # `  V
)  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
1514adantl 467 . . . 4  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  (
0  =  ( # `  V )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
1615com12 32 . . 3  |-  ( 0  =  ( # `  V
)  ->  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
173, 16syl 17 . 2  |-  ( (/)  =  V  ->  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
18 df-ne 2616 . . . 4  |-  ( (/)  =/=  V  <->  -.  (/)  =  V )
19 necom 2689 . . . 4  |-  ( (/)  =/=  V  <->  V  =/=  (/) )
2018, 19bitr3i 254 . . 3  |-  ( -.  (/)  =  V  <->  V  =/=  (/) )
21 ralnex 2868 . . . . . . . 8  |-  ( A. a  e.  V  -.  E. b  e.  V  a  =/=  b  <->  -.  E. a  e.  V  E. b  e.  V  a  =/=  b )
22 ralnex 2868 . . . . . . . . . 10  |-  ( A. b  e.  V  -.  a  =/=  b  <->  -.  E. b  e.  V  a  =/=  b )
23 nne 2620 . . . . . . . . . . . 12  |-  ( -.  a  =/=  b  <->  a  =  b )
24 equcom 1848 . . . . . . . . . . . 12  |-  ( a  =  b  <->  b  =  a )
2523, 24bitri 252 . . . . . . . . . . 11  |-  ( -.  a  =/=  b  <->  b  =  a )
2625ralbii 2853 . . . . . . . . . 10  |-  ( A. b  e.  V  -.  a  =/=  b  <->  A. b  e.  V  b  =  a )
2722, 26bitr3i 254 . . . . . . . . 9  |-  ( -. 
E. b  e.  V  a  =/=  b  <->  A. b  e.  V  b  =  a )
2827ralbii 2853 . . . . . . . 8  |-  ( A. a  e.  V  -.  E. b  e.  V  a  =/=  b  <->  A. a  e.  V  A. b  e.  V  b  =  a )
2921, 28bitr3i 254 . . . . . . 7  |-  ( -. 
E. a  e.  V  E. b  e.  V  a  =/=  b  <->  A. a  e.  V  A. b  e.  V  b  =  a )
30 eqsn 4161 . . . . . . . . . . . 12  |-  ( V  =/=  (/)  ->  ( V  =  { a }  <->  A. b  e.  V  b  =  a ) )
3130adantl 467 . . . . . . . . . . 11  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( V  =  { a } 
<-> 
A. b  e.  V  b  =  a )
)
3231bicomd 204 . . . . . . . . . 10  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. b  e.  V  b  =  a  <->  V  =  { a } ) )
3332ralbidv 2861 . . . . . . . . 9  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  A. b  e.  V  b  =  a  <->  A. a  e.  V  V  =  { a } ) )
34 fveq2 5881 . . . . . . . . . . . . 13  |-  ( V  =  { a }  ->  ( # `  V
)  =  ( # `  { a } ) )
35 hashsnlei 12596 . . . . . . . . . . . . . 14  |-  ( { a }  e.  Fin  /\  ( # `  {
a } )  <_ 
1 )
3635simpri 463 . . . . . . . . . . . . 13  |-  ( # `  { a } )  <_  1
3734, 36syl6eqbr 4461 . . . . . . . . . . . 12  |-  ( V  =  { a }  ->  ( # `  V
)  <_  1 )
3837a1i 11 . . . . . . . . . . 11  |-  ( ( V  e.  W  /\  a  e.  V )  ->  ( V  =  {
a }  ->  ( # `
 V )  <_ 
1 ) )
3938reximdva0 3773 . . . . . . . . . 10  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  E. a  e.  V  ( V  =  { a }  ->  (
# `  V )  <_  1 ) )
40 r19.36v 2973 . . . . . . . . . 10  |-  ( E. a  e.  V  ( V  =  { a }  ->  ( # `  V
)  <_  1 )  ->  ( A. a  e.  V  V  =  { a }  ->  (
# `  V )  <_  1 ) )
4139, 40syl 17 . . . . . . . . 9  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  V  =  { a }  ->  ( # `  V
)  <_  1 ) )
4233, 41sylbid 218 . . . . . . . 8  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  A. b  e.  V  b  =  a  ->  (
# `  V )  <_  1 ) )
43 hashxrcl 12545 . . . . . . . . . 10  |-  ( V  e.  W  ->  ( # `
 V )  e. 
RR* )
4443adantr 466 . . . . . . . . 9  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( # `
 V )  e. 
RR* )
459rexri 9700 . . . . . . . . 9  |-  1  e.  RR*
46 xrlenlt 9706 . . . . . . . . 9  |-  ( ( ( # `  V
)  e.  RR*  /\  1  e.  RR* )  ->  (
( # `  V )  <_  1  <->  -.  1  <  ( # `  V
) ) )
4744, 45, 46sylancl 666 . . . . . . . 8  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  (
( # `  V )  <_  1  <->  -.  1  <  ( # `  V
) ) )
4842, 47sylibd 217 . . . . . . 7  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( A. a  e.  V  A. b  e.  V  b  =  a  ->  -.  1  <  ( # `  V ) ) )
4929, 48syl5bi 220 . . . . . 6  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  ( -.  E. a  e.  V  E. b  e.  V  a  =/=  b  ->  -.  1  <  ( # `  V
) ) )
5049con4d 108 . . . . 5  |-  ( ( V  e.  W  /\  V  =/=  (/) )  ->  (
1  <  ( # `  V
)  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5150impancom 441 . . . 4  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  ( V  =/=  (/)  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5251com12 32 . . 3  |-  ( V  =/=  (/)  ->  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5320, 52sylbi 198 . 2  |-  ( -.  (/)  =  V  ->  (
( V  e.  W  /\  1  <  ( # `  V ) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b ) )
5417, 53pm2.61i 167 1  |-  ( ( V  e.  W  /\  1  <  ( # `  V
) )  ->  E. a  e.  V  E. b  e.  V  a  =/=  b )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   E.wrex 2772   (/)c0 3761   {csn 3998   class class class wbr 4423   ` cfv 5601   Fincfn 7580   0cc0 9546   1c1 9547   RR*cxr 9681    < clt 9682    <_ cle 9683   #chash 12521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-er 7374  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-card 8381  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-hash 12522
This theorem is referenced by:  ring1ne0  17820  frgrawopreglem5  25774
  Copyright terms: Public domain W3C validator