Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashgcdeq Structured version   Unicode version

Theorem hashgcdeq 29564
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) )
Distinct variable groups:    x, M    x, N

Proof of Theorem hashgcdeq
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2451 . 2  |-  ( ( phi `  ( M  /  N ) )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) )  <->  ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
2 eqeq2 2451 . 2  |-  ( 0  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  0  <->  ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
3 nndivdvds 13540 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
43biimpa 484 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( M  /  N )  e.  NN )
5 dfphi2 13848 . . . 4  |-  ( ( M  /  N )  e.  NN  ->  ( phi `  ( M  /  N ) )  =  ( # `  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 } ) )
64, 5syl 16 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( phi `  ( M  /  N
) )  =  (
# `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } ) )
7 eqid 2442 . . . . . 6  |-  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  =  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
8 eqid 2442 . . . . . 6  |-  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
9 eqid 2442 . . . . . 6  |-  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 }  |->  ( z  x.  N ) )  =  ( z  e.  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) )
107, 8, 9hashgcdlem 29563 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
11103expa 1187 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
12 ovex 6115 . . . . . 6  |-  ( 0..^ ( M  /  N
) )  e.  _V
1312rabex 4442 . . . . 5  |-  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  e.  _V
1413f1oen 7329 . . . 4  |-  ( ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }  ->  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  ~~  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )
15 hasheni 12118 . . . 4  |-  ( { y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  ~~  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  ->  (
# `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } )  =  (
# `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
) )
1611, 14, 153syl 20 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( # `  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 } )  =  ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } ) )
176, 16eqtr2d 2475 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) ) )
18 simprr 756 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  =  N )
19 elfzoelz 11552 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ M )  ->  x  e.  ZZ )
2019ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  x  e.  ZZ )
21 nnz 10667 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  ZZ )
2221ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  M  e.  ZZ )
23 gcddvds 13698 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( x  gcd  M )  ||  x  /\  ( x  gcd  M ) 
||  M ) )
2420, 22, 23syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( (
x  gcd  M )  ||  x  /\  (
x  gcd  M )  ||  M ) )
2524simprd 463 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  ||  M
)
2618, 25eqbrtrrd 4313 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  N  ||  M
)
2726expr 615 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( ( x  gcd  M )  =  N  ->  N  ||  M
) )
2827con3d 133 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( -.  N  ||  M  ->  -.  (
x  gcd  M )  =  N ) )
2928impancom 440 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  (
x  e.  ( 0..^ M )  ->  -.  ( x  gcd  M )  =  N ) )
3029ralrimiv 2797 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  A. x  e.  ( 0..^ M )  -.  ( x  gcd  M )  =  N )
31 rabeq0 3658 . . . . 5  |-  ( { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/)  <->  A. x  e.  ( 0..^ M )  -.  (
x  gcd  M )  =  N )
3230, 31sylibr 212 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/) )
3332fveq2d 5694 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( # `
 { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  ( # `  (/) ) )
34 hash0 12134 . . 3  |-  ( # `  (/) )  =  0
3533, 34syl6eq 2490 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( # `
 { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  0 )
361, 2, 17, 35ifbothda 3823 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( # `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   {crab 2718   (/)c0 3636   ifcif 3790   class class class wbr 4291    e. cmpt 4349   -1-1-onto->wf1o 5416   ` cfv 5417  (class class class)co 6090    ~~ cen 7306   0cc0 9281   1c1 9282    x. cmul 9286    / cdiv 9992   NNcn 10321   ZZcz 10645  ..^cfzo 11547   #chash 12102    || cdivides 13534    gcd cgcd 13689   phicphi 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-sup 7690  df-card 8108  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-n0 10579  df-z 10646  df-uz 10861  df-rp 10991  df-fz 11437  df-fzo 11548  df-fl 11641  df-mod 11708  df-seq 11806  df-exp 11865  df-hash 12103  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-dvds 13535  df-gcd 13690  df-phi 13840
This theorem is referenced by:  phisum  29565
  Copyright terms: Public domain W3C validator