MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgadd Structured version   Unicode version

Theorem hashgadd 12447
Description:  G maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
hashgadd.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
Assertion
Ref Expression
hashgadd  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )

Proof of Theorem hashgadd
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6304 . . . . . 6  |-  ( n  =  (/)  ->  ( A  +o  n )  =  ( A  +o  (/) ) )
21fveq2d 5876 . . . . 5  |-  ( n  =  (/)  ->  ( G `
 ( A  +o  n ) )  =  ( G `  ( A  +o  (/) ) ) )
3 fveq2 5872 . . . . . 6  |-  ( n  =  (/)  ->  ( G `
 n )  =  ( G `  (/) ) )
43oveq2d 6312 . . . . 5  |-  ( n  =  (/)  ->  ( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
52, 4eqeq12d 2479 . . . 4  |-  ( n  =  (/)  ->  ( ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) )
65imbi2d 316 . . 3  |-  ( n  =  (/)  ->  ( ( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) ) )
7 oveq2 6304 . . . . . 6  |-  ( n  =  z  ->  ( A  +o  n )  =  ( A  +o  z
) )
87fveq2d 5876 . . . . 5  |-  ( n  =  z  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  z ) ) )
9 fveq2 5872 . . . . . 6  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
109oveq2d 6312 . . . . 5  |-  ( n  =  z  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )
118, 10eqeq12d 2479 . . . 4  |-  ( n  =  z  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) )
1211imbi2d 316 . . 3  |-  ( n  =  z  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) ) )
13 oveq2 6304 . . . . . 6  |-  ( n  =  suc  z  -> 
( A  +o  n
)  =  ( A  +o  suc  z ) )
1413fveq2d 5876 . . . . 5  |-  ( n  =  suc  z  -> 
( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  suc  z
) ) )
15 fveq2 5872 . . . . . 6  |-  ( n  =  suc  z  -> 
( G `  n
)  =  ( G `
 suc  z )
)
1615oveq2d 6312 . . . . 5  |-  ( n  =  suc  z  -> 
( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) )
1714, 16eqeq12d 2479 . . . 4  |-  ( n  =  suc  z  -> 
( ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) )  <-> 
( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) )
1817imbi2d 316 . . 3  |-  ( n  =  suc  z  -> 
( ( A  e. 
om  ->  ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) ) )  <->  ( A  e. 
om  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) ) )
19 oveq2 6304 . . . . . 6  |-  ( n  =  B  ->  ( A  +o  n )  =  ( A  +o  B
) )
2019fveq2d 5876 . . . . 5  |-  ( n  =  B  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  B ) ) )
21 fveq2 5872 . . . . . 6  |-  ( n  =  B  ->  ( G `  n )  =  ( G `  B ) )
2221oveq2d 6312 . . . . 5  |-  ( n  =  B  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
2320, 22eqeq12d 2479 . . . 4  |-  ( n  =  B  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) )
2423imbi2d 316 . . 3  |-  ( n  =  B  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) ) )
25 hashgadd.1 . . . . . . . . 9  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
2625hashgf1o 12083 . . . . . . . 8  |-  G : om
-1-1-onto-> NN0
27 f1of 5822 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
2826, 27ax-mp 5 . . . . . . 7  |-  G : om
--> NN0
2928ffvelrni 6031 . . . . . 6  |-  ( A  e.  om  ->  ( G `  A )  e.  NN0 )
3029nn0cnd 10875 . . . . 5  |-  ( A  e.  om  ->  ( G `  A )  e.  CC )
3130addid1d 9797 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  0 )  =  ( G `  A ) )
32 0z 10896 . . . . . . 7  |-  0  e.  ZZ
3332, 25om2uz0i 12060 . . . . . 6  |-  ( G `
 (/) )  =  0
3433oveq2i 6307 . . . . 5  |-  ( ( G `  A )  +  ( G `  (/) ) )  =  ( ( G `  A
)  +  0 )
3534a1i 11 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  ( G `
 (/) ) )  =  ( ( G `  A )  +  0 ) )
36 nna0 7271 . . . . 5  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
3736fveq2d 5876 . . . 4  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( G `  A
) )
3831, 35, 373eqtr4rd 2509 . . 3  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
39 nnasuc 7273 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z
) )
4039fveq2d 5876 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( G `
 suc  ( A  +o  z ) ) )
41 nnacl 7278 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  z
)  e.  om )
4232, 25om2uzsuci 12061 . . . . . . . . . 10  |-  ( ( A  +o  z )  e.  om  ->  ( G `  suc  ( A  +o  z ) )  =  ( ( G `
 ( A  +o  z ) )  +  1 ) )
4341, 42syl 16 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  suc  ( A  +o  z
) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
4440, 43eqtrd 2498 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
45443adant3 1016 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 ( A  +o  z ) )  +  1 ) )
4628ffvelrni 6031 . . . . . . . . . . 11  |-  ( z  e.  om  ->  ( G `  z )  e.  NN0 )
4746nn0cnd 10875 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  z )  e.  CC )
48 ax-1cn 9567 . . . . . . . . . . 11  |-  1  e.  CC
49 addass 9596 . . . . . . . . . . 11  |-  ( ( ( G `  A
)  e.  CC  /\  ( G `  z )  e.  CC  /\  1  e.  CC )  ->  (
( ( G `  A )  +  ( G `  z ) )  +  1 )  =  ( ( G `
 A )  +  ( ( G `  z )  +  1 ) ) )
5048, 49mp3an3 1313 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  CC  /\  ( G `  z )  e.  CC )  -> 
( ( ( G `
 A )  +  ( G `  z
) )  +  1 )  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
5130, 47, 50syl2an 477 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 )  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
52513adant3 1016 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( ( G `  A )  +  ( G `  z ) )  +  1 )  =  ( ( G `
 A )  +  ( ( G `  z )  +  1 ) ) )
53 oveq1 6303 . . . . . . . . 9  |-  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
54533ad2ant3 1019 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
5532, 25om2uzsuci 12061 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  suc  z )  =  ( ( G `
 z )  +  1 ) )
5655oveq2d 6312 . . . . . . . . 9  |-  ( z  e.  om  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
57563ad2ant2 1018 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
5852, 54, 573eqtr4d 2508 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( G `  A )  +  ( G `  suc  z
) ) )
5945, 58eqtrd 2498 . . . . . 6  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) )
60593expia 1198 . . . . 5  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) )  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) )
6160expcom 435 . . . 4  |-  ( z  e.  om  ->  ( A  e.  om  ->  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) ) ) )
6261a2d 26 . . 3  |-  ( z  e.  om  ->  (
( A  e.  om  ->  ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )  -> 
( A  e.  om  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) ) )
636, 12, 18, 24, 38, 62finds 6725 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) ) )
6463impcom 430 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   _Vcvv 3109   (/)c0 3793    |-> cmpt 4515   suc csuc 4889    |` cres 5010   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   omcom 6699   reccrdg 7093    +o coa 7145   CCcc 9507   0cc0 9509   1c1 9510    + caddc 9512   NN0cn0 10816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107
This theorem is referenced by:  hashdom  12449  hashun  12452
  Copyright terms: Public domain W3C validator