MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgadd Structured version   Unicode version

Theorem hashgadd 12136
Description:  G maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
hashgadd.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
Assertion
Ref Expression
hashgadd  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )

Proof of Theorem hashgadd
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6098 . . . . . 6  |-  ( n  =  (/)  ->  ( A  +o  n )  =  ( A  +o  (/) ) )
21fveq2d 5692 . . . . 5  |-  ( n  =  (/)  ->  ( G `
 ( A  +o  n ) )  =  ( G `  ( A  +o  (/) ) ) )
3 fveq2 5688 . . . . . 6  |-  ( n  =  (/)  ->  ( G `
 n )  =  ( G `  (/) ) )
43oveq2d 6106 . . . . 5  |-  ( n  =  (/)  ->  ( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
52, 4eqeq12d 2455 . . . 4  |-  ( n  =  (/)  ->  ( ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) )
65imbi2d 316 . . 3  |-  ( n  =  (/)  ->  ( ( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) ) )
7 oveq2 6098 . . . . . 6  |-  ( n  =  z  ->  ( A  +o  n )  =  ( A  +o  z
) )
87fveq2d 5692 . . . . 5  |-  ( n  =  z  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  z ) ) )
9 fveq2 5688 . . . . . 6  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
109oveq2d 6106 . . . . 5  |-  ( n  =  z  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )
118, 10eqeq12d 2455 . . . 4  |-  ( n  =  z  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) )
1211imbi2d 316 . . 3  |-  ( n  =  z  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) ) )
13 oveq2 6098 . . . . . 6  |-  ( n  =  suc  z  -> 
( A  +o  n
)  =  ( A  +o  suc  z ) )
1413fveq2d 5692 . . . . 5  |-  ( n  =  suc  z  -> 
( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  suc  z
) ) )
15 fveq2 5688 . . . . . 6  |-  ( n  =  suc  z  -> 
( G `  n
)  =  ( G `
 suc  z )
)
1615oveq2d 6106 . . . . 5  |-  ( n  =  suc  z  -> 
( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) )
1714, 16eqeq12d 2455 . . . 4  |-  ( n  =  suc  z  -> 
( ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) )  <-> 
( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) )
1817imbi2d 316 . . 3  |-  ( n  =  suc  z  -> 
( ( A  e. 
om  ->  ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) ) )  <->  ( A  e. 
om  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) ) )
19 oveq2 6098 . . . . . 6  |-  ( n  =  B  ->  ( A  +o  n )  =  ( A  +o  B
) )
2019fveq2d 5692 . . . . 5  |-  ( n  =  B  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  B ) ) )
21 fveq2 5688 . . . . . 6  |-  ( n  =  B  ->  ( G `  n )  =  ( G `  B ) )
2221oveq2d 6106 . . . . 5  |-  ( n  =  B  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
2320, 22eqeq12d 2455 . . . 4  |-  ( n  =  B  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) )
2423imbi2d 316 . . 3  |-  ( n  =  B  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) ) )
25 hashgadd.1 . . . . . . . . 9  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
2625hashgf1o 11789 . . . . . . . 8  |-  G : om
-1-1-onto-> NN0
27 f1of 5638 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
2826, 27ax-mp 5 . . . . . . 7  |-  G : om
--> NN0
2928ffvelrni 5839 . . . . . 6  |-  ( A  e.  om  ->  ( G `  A )  e.  NN0 )
3029nn0cnd 10634 . . . . 5  |-  ( A  e.  om  ->  ( G `  A )  e.  CC )
3130addid1d 9565 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  0 )  =  ( G `  A ) )
32 0z 10653 . . . . . . 7  |-  0  e.  ZZ
3332, 25om2uz0i 11766 . . . . . 6  |-  ( G `
 (/) )  =  0
3433oveq2i 6101 . . . . 5  |-  ( ( G `  A )  +  ( G `  (/) ) )  =  ( ( G `  A
)  +  0 )
3534a1i 11 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  ( G `
 (/) ) )  =  ( ( G `  A )  +  0 ) )
36 nna0 7039 . . . . 5  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
3736fveq2d 5692 . . . 4  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( G `  A
) )
3831, 35, 373eqtr4rd 2484 . . 3  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
39 nnasuc 7041 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z
) )
4039fveq2d 5692 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( G `
 suc  ( A  +o  z ) ) )
41 nnacl 7046 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  z
)  e.  om )
4232, 25om2uzsuci 11767 . . . . . . . . . 10  |-  ( ( A  +o  z )  e.  om  ->  ( G `  suc  ( A  +o  z ) )  =  ( ( G `
 ( A  +o  z ) )  +  1 ) )
4341, 42syl 16 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  suc  ( A  +o  z
) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
4440, 43eqtrd 2473 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
45443adant3 1003 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 ( A  +o  z ) )  +  1 ) )
4628ffvelrni 5839 . . . . . . . . . . 11  |-  ( z  e.  om  ->  ( G `  z )  e.  NN0 )
4746nn0cnd 10634 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  z )  e.  CC )
48 ax-1cn 9336 . . . . . . . . . . 11  |-  1  e.  CC
49 addass 9365 . . . . . . . . . . 11  |-  ( ( ( G `  A
)  e.  CC  /\  ( G `  z )  e.  CC  /\  1  e.  CC )  ->  (
( ( G `  A )  +  ( G `  z ) )  +  1 )  =  ( ( G `
 A )  +  ( ( G `  z )  +  1 ) ) )
5048, 49mp3an3 1298 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  CC  /\  ( G `  z )  e.  CC )  -> 
( ( ( G `
 A )  +  ( G `  z
) )  +  1 )  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
5130, 47, 50syl2an 474 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 )  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
52513adant3 1003 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( ( G `  A )  +  ( G `  z ) )  +  1 )  =  ( ( G `
 A )  +  ( ( G `  z )  +  1 ) ) )
53 oveq1 6097 . . . . . . . . 9  |-  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
54533ad2ant3 1006 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
5532, 25om2uzsuci 11767 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  suc  z )  =  ( ( G `
 z )  +  1 ) )
5655oveq2d 6106 . . . . . . . . 9  |-  ( z  e.  om  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
57563ad2ant2 1005 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
5852, 54, 573eqtr4d 2483 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( G `  A )  +  ( G `  suc  z
) ) )
5945, 58eqtrd 2473 . . . . . 6  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) )
60593expia 1184 . . . . 5  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) )  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) )
6160expcom 435 . . . 4  |-  ( z  e.  om  ->  ( A  e.  om  ->  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) ) ) )
6261a2d 26 . . 3  |-  ( z  e.  om  ->  (
( A  e.  om  ->  ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )  -> 
( A  e.  om  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) ) )
636, 12, 18, 24, 38, 62finds 6501 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) ) )
6463impcom 430 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970   (/)c0 3634    e. cmpt 4347   suc csuc 4717    |` cres 4838   -->wf 5411   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   omcom 6475   reccrdg 6861    +o coa 6913   CCcc 9276   0cc0 9278   1c1 9279    + caddc 9281   NN0cn0 10575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858
This theorem is referenced by:  hashdom  12138  hashun  12141
  Copyright terms: Public domain W3C validator