MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfun Unicode version

Theorem hashfun 11655
Description: A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfun  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )

Proof of Theorem hashfun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 5441 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 hashfn 11604 . . 3  |-  ( F  Fn  dom  F  -> 
( # `  F )  =  ( # `  dom  F ) )
31, 2sylbi 188 . 2  |-  ( Fun 
F  ->  ( # `  F
)  =  ( # `  dom  F ) )
4 dmfi 7348 . . . . . . . . . . 11  |-  ( F  e.  Fin  ->  dom  F  e.  Fin )
5 hashcl 11594 . . . . . . . . . . 11  |-  ( dom 
F  e.  Fin  ->  (
# `  dom  F )  e.  NN0 )
64, 5syl 16 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  NN0 )
76nn0red 10231 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  RR )
87adantr 452 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  e.  RR )
9 df-rel 4844 . . . . . . . . . . . . 13  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
10 dfss3 3298 . . . . . . . . . . . . 13  |-  ( F 
C_  ( _V  X.  _V )  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
119, 10bitri 241 . . . . . . . . . . . 12  |-  ( Rel 
F  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
1211notbii 288 . . . . . . . . . . 11  |-  ( -. 
Rel  F  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
13 rexnal 2677 . . . . . . . . . . 11  |-  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
1412, 13bitr4i 244 . . . . . . . . . 10  |-  ( -. 
Rel  F  <->  E. x  e.  F  -.  x  e.  ( _V  X.  _V ) )
15 dmun 5035 . . . . . . . . . . . . . . . 16  |-  dom  (
( F  \  {
x } )  u. 
{ x } )  =  ( dom  ( F  \  { x }
)  u.  dom  {
x } )
1615fveq2i 5690 . . . . . . . . . . . . . . 15  |-  ( # `  dom  ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )
17 dmsnn0 5294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( _V  X.  _V )  <->  dom  { x }  =/=  (/) )
1817biimpri 198 . . . . . . . . . . . . . . . . . . . 20  |-  ( dom 
{ x }  =/=  (/) 
->  x  e.  ( _V  X.  _V ) )
1918necon1bi 2610 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  x  e.  ( _V 
X.  _V )  ->  dom  { x }  =  (/) )
20193ad2ant3 980 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  dom  { x }  =  (/) )
2120uneq2d 3461 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  ( dom  ( F 
\  { x }
)  u.  (/) ) )
22 un0 3612 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( F  \  {
x } )  u.  (/) )  =  dom  ( F  \  { x } )
2321, 22syl6eq 2452 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  dom  ( F  \  { x } ) )
2423fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )  =  ( # `  dom  ( F  \  { x } ) ) )
2516, 24syl5eq 2448 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  ( F 
\  { x }
) ) )
26 diffi 7298 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  Fin  ->  ( F  \  { x }
)  e.  Fin )
27 dmfi 7348 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
2826, 27syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
29 hashcl 11594 . . . . . . . . . . . . . . . . . 18  |-  ( dom  ( F  \  {
x } )  e. 
Fin  ->  ( # `  dom  ( F  \  { x } ) )  e. 
NN0 )
3028, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  NN0 )
3130nn0red 10231 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  RR )
32 hashcl 11594 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  ( F  \  { x }
) )  e.  NN0 )
3326, 32syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  NN0 )
3433nn0red 10231 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  RR )
35 peano2re 9195 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  ( F  \  { x } ) )  e.  RR  ->  ( ( # `  ( F  \  { x }
) )  +  1 )  e.  RR )
3634, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  e.  RR )
37 fidomdm 7347 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) )
3826, 37syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F 
\  { x }
) )
39 hashdom 11608 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( F  \  { x } )  e.  Fin  /\  ( F  \  { x }
)  e.  Fin )  ->  ( ( # `  dom  ( F  \  { x } ) )  <_ 
( # `  ( F 
\  { x }
) )  <->  dom  ( F 
\  { x }
)  ~<_  ( F  \  { x } ) ) )
4028, 26, 39syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { x }
) )  <_  ( # `
 ( F  \  { x } ) )  <->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) ) )
4138, 40mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <_  ( # `  ( F  \  { x }
) ) )
4234ltp1d 9897 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
4331, 34, 36, 41, 42lelttrd 9184 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
44433ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( F  \  { x } ) )  < 
( ( # `  ( F  \  { x }
) )  +  1 ) )
4525, 44eqbrtrd 4192 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  (
( # `  ( F 
\  { x }
) )  +  1 ) )
46 snfi 7146 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  Fin
47 incom 3493 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( F  \  {
x } ) )
48 disjdif 3660 . . . . . . . . . . . . . . . . . 18  |-  ( { x }  i^i  ( F  \  { x }
) )  =  (/)
4947, 48eqtri 2424 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { x } )  i^i  {
x } )  =  (/)
50 hashun 11611 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  \  {
x } )  e. 
Fin  /\  { x }  e.  Fin  /\  (
( F  \  {
x } )  i^i 
{ x } )  =  (/) )  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
5146, 49, 50mp3an23 1271 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) ) )
5226, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
53 vex 2919 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
54 hashsng 11602 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  ( # `
 { x }
)  =  1 )
5553, 54ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( # `  { x } )  =  1
5655oveq2i 6051 . . . . . . . . . . . . . . 15  |-  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  1 )
5752, 56syl6req 2453 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  =  ( # `  ( ( F  \  { x } )  u.  { x }
) ) )
58573ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( ( # `  ( F  \  {
x } ) )  +  1 )  =  ( # `  (
( F  \  {
x } )  u. 
{ x } ) ) )
5945, 58breqtrd 4196 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) ) )
60 difsnid 3904 . . . . . . . . . . . . . . 15  |-  ( x  e.  F  ->  (
( F  \  {
x } )  u. 
{ x } )  =  F )
6160dmeqd 5031 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  dom  ( ( F  \  { x } )  u.  { x }
)  =  dom  F
)
6261fveq2d 5691 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 dom  ( ( F  \  { x }
)  u.  { x } ) )  =  ( # `  dom  F ) )
63623ad2ant2 979 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  F ) )
6460fveq2d 5691 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  F
) )
65643ad2ant2 979 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( # `  F ) )
6659, 63, 653brtr3d 4201 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
6766rexlimdv3a 2792 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  -> 
( # `  dom  F
)  <  ( # `  F
) ) )
6814, 67syl5bi 209 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 dom  F )  <  ( # `  F
) ) )
6968imp 419 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  <  ( # `  F
) )
708, 69gtned 9164 . . . . . . 7  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  F )  =/=  ( # `  dom  F ) )
7170ex 424 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
7271necon4bd 2629 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Rel  F ) )
7372imp 419 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Rel  F )
74 2nalexn 1579 . . . . . . . 8  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
75 df-ne 2569 . . . . . . . . . . . . 13  |-  ( y  =/=  z  <->  -.  y  =  z )
7675anbi2i 676 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z ) )
77 annim 415 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7876, 77bitri 241 . . . . . . . . . . 11  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7978exbii 1589 . . . . . . . . . 10  |-  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  E. z  -.  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
80 exnal 1580 . . . . . . . . . 10  |-  ( E. z  -.  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
8179, 80bitr2i 242 . . . . . . . . 9  |-  ( -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )
82812exbii 1590 . . . . . . . 8  |-  ( E. x E. y  -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
8374, 82bitri 241 . . . . . . 7  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
847adantr 452 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  e.  RR )
85 2re 10025 . . . . . . . . . . . . 13  |-  2  e.  RR
86 diffi 7298 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
87 dmfi 7348 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
8886, 87syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
89 hashcl 11594 . . . . . . . . . . . . . . . 16  |-  ( dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  NN0 )
9088, 89syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
9190nn0red 10231 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
9291adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )
93 readdcl 9029 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
9485, 92, 93sylancr 645 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
95 hashcl 11594 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 F )  e. 
NN0 )
9695nn0red 10231 . . . . . . . . . . . . 13  |-  ( F  e.  Fin  ->  ( # `
 F )  e.  RR )
9796adantr 452 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  e.  RR )
98 1re 9046 . . . . . . . . . . . . . . 15  |-  1  e.  RR
99 readdcl 9029 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10098, 91, 99sylancr 645 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
101100adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10285, 91, 93sylancr 645 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
103102adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
104 dmun 5035 . . . . . . . . . . . . . . . . . 18  |-  dom  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
105 opex 4387 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. x ,  y >.  e.  _V
106 opex 4387 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. x ,  z >.  e.  _V
107105, 106prss 3912 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  <->  { <. x ,  y
>. ,  <. x ,  z >. }  C_  F
)
108 undif 3668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  C_  F  <->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
109107, 108bitri 241 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  <->  ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
110109biimpi 187 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
111110dmeqd 5031 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  dom  F
)
112104, 111syl5reqr 2451 . . . . . . . . . . . . . . . . 17  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( dom  { <. x ,  y >. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )
113 vex 2919 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
114 vex 2919 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
115113, 114dmprop 5304 . . . . . . . . . . . . . . . . . . 19  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x ,  x }
116 dfsn2 3788 . . . . . . . . . . . . . . . . . . 19  |-  { x }  =  { x ,  x }
117115, 116eqtr4i 2427 . . . . . . . . . . . . . . . . . 18  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x }
118117uneq1i 3457 . . . . . . . . . . . . . . . . 17  |-  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
119112, 118syl6eq 2452 . . . . . . . . . . . . . . . 16  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
120119fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
121120ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
122 hashun2 11612 . . . . . . . . . . . . . . . . 17  |-  ( ( { x }  e.  Fin  /\  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )  -> 
( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12346, 88, 122sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12455oveq1i 6050 . . . . . . . . . . . . . . . 16  |-  ( (
# `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
125123, 124syl6breq 4211 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
126125adantr 452 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
127121, 126eqbrtrd 4192 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
128 1lt2 10098 . . . . . . . . . . . . . . 15  |-  1  <  2
129 ltadd1 9451 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )  -> 
( 1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) ) )
13098, 85, 129mp3an12 1269 . . . . . . . . . . . . . . . 16  |-  ( (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  ->  ( 1  <  2  <->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) ) )
13191, 130syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) ) )
132128, 131mpbii 203 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
133132adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
13484, 101, 103, 127, 133lelttrd 9184 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
135 fidomdm 7347 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
13686, 135syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
137 hashdom 11608 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin  /\  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin )  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
13888, 86, 137syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
139136, 138mpbird 224 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
140 hashcl 11594 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
14186, 140syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
142141nn0red 10231 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
143 leadd2 9453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  2  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14485, 143mp3an3 1268 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14591, 142, 144syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
146139, 145mpbid 202 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <_  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
147146adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
148 prfi 7340 . . . . . . . . . . . . . . . . 17  |-  { <. x ,  y >. ,  <. x ,  z >. }  e.  Fin
149 disjdif 3660 . . . . . . . . . . . . . . . . 17  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  i^i  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/)
150 hashun 11611 . . . . . . . . . . . . . . . . 17  |-  ( ( { <. x ,  y
>. ,  <. x ,  z >. }  e.  Fin  /\  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  /\  ( { <. x ,  y >. ,  <. x ,  z >. }  i^i  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/) )  -> 
( # `  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
151148, 149, 150mp3an13 1270 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
15286, 151syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
153152adantr 452 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
154110fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
155154ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
15653, 113opth 4395 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
x ,  y >.  =  <. x ,  z
>. 
<->  ( x  =  x  /\  y  =  z ) )
157156simprbi 451 . . . . . . . . . . . . . . . . . 18  |-  ( <.
x ,  y >.  =  <. x ,  z
>.  ->  y  =  z )
158157necon3i 2606 . . . . . . . . . . . . . . . . 17  |-  ( y  =/=  z  ->  <. x ,  y >.  =/=  <. x ,  z >. )
159 hashprg 11621 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  _V  /\  <. x ,  z >.  e.  _V )  ->  ( <. x ,  y >.  =/=  <. x ,  z >.  <->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 ) )
160105, 106, 159mp2an 654 . . . . . . . . . . . . . . . . 17  |-  ( <.
x ,  y >.  =/=  <. x ,  z
>. 
<->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 )
161158, 160sylib 189 . . . . . . . . . . . . . . . 16  |-  ( y  =/=  z  ->  ( # `
 { <. x ,  y >. ,  <. x ,  z >. } )  =  2 )
162161oveq1d 6055 . . . . . . . . . . . . . . 15  |-  ( y  =/=  z  ->  (
( # `  { <. x ,  y >. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
163162ad2antll 710 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( ( # `  { <. x ,  y
>. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
164153, 155, 1633eqtr3rd 2445 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
165147, 164breqtrd 4196 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  ( # `
 F ) )
16684, 94, 97, 134, 165ltletrd 9186 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
16784, 166gtned 9164 . . . . . . . . . 10  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  =/=  ( # `  dom  F ) )
168167ex 424 . . . . . . . . 9  |-  ( F  e.  Fin  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z )  -> 
( # `  F )  =/=  ( # `  dom  F ) ) )
169168exlimdv 1643 . . . . . . . 8  |-  ( F  e.  Fin  ->  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
170169exlimdvv 1644 . . . . . . 7  |-  ( F  e.  Fin  ->  ( E. x E. y E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
17183, 170syl5bi 209 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
172171necon4bd 2629 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
173172imp 419 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
174 dffun4 5425 . . . 4  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
17573, 173, 174sylanbrc 646 . . 3  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Fun  F )
176175ex 424 . 2  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Fun  F ) )
1773, 176impbid2 196 1  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   {cpr 3775   <.cop 3777   class class class wbr 4172    X. cxp 4835   dom cdm 4837   Rel wrel 4842   Fun wfun 5407    Fn wfn 5408   ` cfv 5413  (class class class)co 6040    ~<_ cdom 7066   Fincfn 7068   RRcr 8945   1c1 8947    + caddc 8949    < clt 9076    <_ cle 9077   2c2 10005   NN0cn0 10177   #chash 11573
This theorem is referenced by:  cusgrasizeinds  21438  hashfirdm  27996  hashfzdm  27997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-hash 11574
  Copyright terms: Public domain W3C validator