MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfun Structured version   Unicode version

Theorem hashfun 12557
Description: A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfun  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )

Proof of Theorem hashfun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 5573 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 hashfn 12504 . . 3  |-  ( F  Fn  dom  F  -> 
( # `  F )  =  ( # `  dom  F ) )
31, 2sylbi 198 . 2  |-  ( Fun 
F  ->  ( # `  F
)  =  ( # `  dom  F ) )
4 dmfi 7807 . . . . . . . . . . 11  |-  ( F  e.  Fin  ->  dom  F  e.  Fin )
5 hashcl 12488 . . . . . . . . . . 11  |-  ( dom 
F  e.  Fin  ->  (
# `  dom  F )  e.  NN0 )
64, 5syl 17 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  NN0 )
76nn0red 10877 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  RR )
87adantr 466 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  e.  RR )
9 df-rel 4803 . . . . . . . . . . . . 13  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
10 dfss3 3397 . . . . . . . . . . . . 13  |-  ( F 
C_  ( _V  X.  _V )  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
119, 10bitri 252 . . . . . . . . . . . 12  |-  ( Rel 
F  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
1211notbii 297 . . . . . . . . . . 11  |-  ( -. 
Rel  F  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
13 rexnal 2813 . . . . . . . . . . 11  |-  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
1412, 13bitr4i 255 . . . . . . . . . 10  |-  ( -. 
Rel  F  <->  E. x  e.  F  -.  x  e.  ( _V  X.  _V ) )
15 dmun 5003 . . . . . . . . . . . . . . . 16  |-  dom  (
( F  \  {
x } )  u. 
{ x } )  =  ( dom  ( F  \  { x }
)  u.  dom  {
x } )
1615fveq2i 5828 . . . . . . . . . . . . . . 15  |-  ( # `  dom  ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )
17 dmsnn0 5263 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( _V  X.  _V )  <->  dom  { x }  =/=  (/) )
1817biimpri 209 . . . . . . . . . . . . . . . . . . . 20  |-  ( dom 
{ x }  =/=  (/) 
->  x  e.  ( _V  X.  _V ) )
1918necon1bi 2629 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  x  e.  ( _V 
X.  _V )  ->  dom  { x }  =  (/) )
20193ad2ant3 1028 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  dom  { x }  =  (/) )
2120uneq2d 3563 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  ( dom  ( F 
\  { x }
)  u.  (/) ) )
22 un0 3732 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( F  \  {
x } )  u.  (/) )  =  dom  ( F  \  { x } )
2321, 22syl6eq 2478 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  dom  ( F  \  { x } ) )
2423fveq2d 5829 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )  =  ( # `  dom  ( F  \  { x } ) ) )
2516, 24syl5eq 2474 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  ( F 
\  { x }
) ) )
26 diffi 7756 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  Fin  ->  ( F  \  { x }
)  e.  Fin )
27 dmfi 7807 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
29 hashcl 12488 . . . . . . . . . . . . . . . . . 18  |-  ( dom  ( F  \  {
x } )  e. 
Fin  ->  ( # `  dom  ( F  \  { x } ) )  e. 
NN0 )
3028, 29syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  NN0 )
3130nn0red 10877 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  RR )
32 hashcl 12488 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  ( F  \  { x }
) )  e.  NN0 )
3326, 32syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  NN0 )
3433nn0red 10877 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  RR )
35 peano2re 9757 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  ( F  \  { x } ) )  e.  RR  ->  ( ( # `  ( F  \  { x }
) )  +  1 )  e.  RR )
3634, 35syl 17 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  e.  RR )
37 fidomdm 7806 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) )
3826, 37syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F 
\  { x }
) )
39 hashdom 12508 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( F  \  { x } )  e.  Fin  /\  ( F  \  { x }
)  e.  Fin )  ->  ( ( # `  dom  ( F  \  { x } ) )  <_ 
( # `  ( F 
\  { x }
) )  <->  dom  ( F 
\  { x }
)  ~<_  ( F  \  { x } ) ) )
4028, 26, 39syl2anc 665 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { x }
) )  <_  ( # `
 ( F  \  { x } ) )  <->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) ) )
4138, 40mpbird 235 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <_  ( # `  ( F  \  { x }
) ) )
4234ltp1d 10488 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
4331, 34, 36, 41, 42lelttrd 9744 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
44433ad2ant1 1026 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( F  \  { x } ) )  < 
( ( # `  ( F  \  { x }
) )  +  1 ) )
4525, 44eqbrtrd 4387 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  (
( # `  ( F 
\  { x }
) )  +  1 ) )
46 snfi 7604 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  Fin
47 incom 3598 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( F  \  {
x } ) )
48 disjdif 3812 . . . . . . . . . . . . . . . . . 18  |-  ( { x }  i^i  ( F  \  { x }
) )  =  (/)
4947, 48eqtri 2450 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { x } )  i^i  {
x } )  =  (/)
50 hashun 12511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  \  {
x } )  e. 
Fin  /\  { x }  e.  Fin  /\  (
( F  \  {
x } )  i^i 
{ x } )  =  (/) )  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
5146, 49, 50mp3an23 1352 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) ) )
5226, 51syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
53 vex 3025 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
54 hashsng 12499 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  ( # `
 { x }
)  =  1 )
5553, 54ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( # `  { x } )  =  1
5655oveq2i 6260 . . . . . . . . . . . . . . 15  |-  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  1 )
5752, 56syl6req 2479 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  =  ( # `  ( ( F  \  { x } )  u.  { x }
) ) )
58573ad2ant1 1026 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( ( # `  ( F  \  {
x } ) )  +  1 )  =  ( # `  (
( F  \  {
x } )  u. 
{ x } ) ) )
5945, 58breqtrd 4391 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) ) )
60 difsnid 4089 . . . . . . . . . . . . . . 15  |-  ( x  e.  F  ->  (
( F  \  {
x } )  u. 
{ x } )  =  F )
6160dmeqd 4999 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  dom  ( ( F  \  { x } )  u.  { x }
)  =  dom  F
)
6261fveq2d 5829 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 dom  ( ( F  \  { x }
)  u.  { x } ) )  =  ( # `  dom  F ) )
63623ad2ant2 1027 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  F ) )
6460fveq2d 5829 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  F
) )
65643ad2ant2 1027 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( # `  F ) )
6659, 63, 653brtr3d 4396 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
6766rexlimdv3a 2858 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  -> 
( # `  dom  F
)  <  ( # `  F
) ) )
6814, 67syl5bi 220 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 dom  F )  <  ( # `  F
) ) )
6968imp 430 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  <  ( # `  F
) )
708, 69gtned 9721 . . . . . . 7  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  F )  =/=  ( # `  dom  F ) )
7170ex 435 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
7271necon4bd 2621 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Rel  F ) )
7372imp 430 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Rel  F )
74 2nalexn 1694 . . . . . . . 8  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
75 df-ne 2601 . . . . . . . . . . . . 13  |-  ( y  =/=  z  <->  -.  y  =  z )
7675anbi2i 698 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z ) )
77 annim 426 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7876, 77bitri 252 . . . . . . . . . . 11  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7978exbii 1712 . . . . . . . . . 10  |-  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  E. z  -.  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
80 exnal 1693 . . . . . . . . . 10  |-  ( E. z  -.  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
8179, 80bitr2i 253 . . . . . . . . 9  |-  ( -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )
82812exbii 1713 . . . . . . . 8  |-  ( E. x E. y  -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
8374, 82bitri 252 . . . . . . 7  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
847adantr 466 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  e.  RR )
85 2re 10630 . . . . . . . . . . . . 13  |-  2  e.  RR
86 diffi 7756 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
87 dmfi 7807 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
8886, 87syl 17 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
89 hashcl 12488 . . . . . . . . . . . . . . . 16  |-  ( dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  NN0 )
9088, 89syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
9190nn0red 10877 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
9291adantr 466 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )
93 readdcl 9573 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
9485, 92, 93sylancr 667 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
95 hashcl 12488 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 F )  e. 
NN0 )
9695nn0red 10877 . . . . . . . . . . . . 13  |-  ( F  e.  Fin  ->  ( # `
 F )  e.  RR )
9796adantr 466 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  e.  RR )
98 1re 9593 . . . . . . . . . . . . . . 15  |-  1  e.  RR
99 readdcl 9573 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10098, 91, 99sylancr 667 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
101100adantr 466 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10285, 91, 93sylancr 667 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
103102adantr 466 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
104 dmun 5003 . . . . . . . . . . . . . . . . . 18  |-  dom  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
105 opex 4628 . . . . . . . . . . . . . . . . . . . . 21  |-  <. x ,  y >.  e.  _V
106 opex 4628 . . . . . . . . . . . . . . . . . . . . 21  |-  <. x ,  z >.  e.  _V
107105, 106prss 4097 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  <->  { <. x ,  y
>. ,  <. x ,  z >. }  C_  F
)
108 undif 3821 . . . . . . . . . . . . . . . . . . . 20  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  C_  F  <->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
109107, 108sylbb 200 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
110109dmeqd 4999 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  dom  F
)
111104, 110syl5reqr 2477 . . . . . . . . . . . . . . . . 17  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( dom  { <. x ,  y >. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )
112 vex 3025 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
113 vex 3025 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
114112, 113dmprop 5273 . . . . . . . . . . . . . . . . . . 19  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x ,  x }
115 dfsn2 3954 . . . . . . . . . . . . . . . . . . 19  |-  { x }  =  { x ,  x }
116114, 115eqtr4i 2453 . . . . . . . . . . . . . . . . . 18  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x }
117116uneq1i 3559 . . . . . . . . . . . . . . . . 17  |-  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
118111, 117syl6eq 2478 . . . . . . . . . . . . . . . 16  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
119118fveq2d 5829 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
120119ad2antrl 732 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
121 hashun2 12512 . . . . . . . . . . . . . . . . 17  |-  ( ( { x }  e.  Fin  /\  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )  -> 
( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12246, 88, 121sylancr 667 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12355oveq1i 6259 . . . . . . . . . . . . . . . 16  |-  ( (
# `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
124122, 123syl6breq 4406 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
125124adantr 466 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
126120, 125eqbrtrd 4387 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
127 1lt2 10727 . . . . . . . . . . . . . . 15  |-  1  <  2
128 ltadd1 10032 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )  -> 
( 1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) ) )
12998, 85, 128mp3an12 1350 . . . . . . . . . . . . . . . 16  |-  ( (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  ->  ( 1  <  2  <->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) ) )
13091, 129syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) ) )
131127, 130mpbii 214 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
132131adantr 466 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
13384, 101, 103, 126, 132lelttrd 9744 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
134 fidomdm 7806 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
13586, 134syl 17 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
136 hashdom 12508 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin  /\  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin )  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
13788, 86, 136syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
138135, 137mpbird 235 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
139 hashcl 12488 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
14086, 139syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
141140nn0red 10877 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
142 leadd2 10034 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  2  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14385, 142mp3an3 1349 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14491, 141, 143syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
145138, 144mpbid 213 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <_  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
146145adantr 466 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
147 prfi 7799 . . . . . . . . . . . . . . . . 17  |-  { <. x ,  y >. ,  <. x ,  z >. }  e.  Fin
148 disjdif 3812 . . . . . . . . . . . . . . . . 17  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  i^i  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/)
149 hashun 12511 . . . . . . . . . . . . . . . . 17  |-  ( ( { <. x ,  y
>. ,  <. x ,  z >. }  e.  Fin  /\  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  /\  ( { <. x ,  y >. ,  <. x ,  z >. }  i^i  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/) )  -> 
( # `  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
150147, 148, 149mp3an13 1351 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
15186, 150syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
152151adantr 466 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
153109fveq2d 5829 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
154153ad2antrl 732 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
15553, 112opth 4638 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
x ,  y >.  =  <. x ,  z
>. 
<->  ( x  =  x  /\  y  =  z ) )
156155simprbi 465 . . . . . . . . . . . . . . . . . 18  |-  ( <.
x ,  y >.  =  <. x ,  z
>.  ->  y  =  z )
157156necon3i 2633 . . . . . . . . . . . . . . . . 17  |-  ( y  =/=  z  ->  <. x ,  y >.  =/=  <. x ,  z >. )
158 hashprg 12522 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  _V  /\  <. x ,  z >.  e.  _V )  ->  ( <. x ,  y >.  =/=  <. x ,  z >.  <->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 ) )
159105, 106, 158mp2an 676 . . . . . . . . . . . . . . . . 17  |-  ( <.
x ,  y >.  =/=  <. x ,  z
>. 
<->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 )
160157, 159sylib 199 . . . . . . . . . . . . . . . 16  |-  ( y  =/=  z  ->  ( # `
 { <. x ,  y >. ,  <. x ,  z >. } )  =  2 )
161160oveq1d 6264 . . . . . . . . . . . . . . 15  |-  ( y  =/=  z  ->  (
( # `  { <. x ,  y >. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
162161ad2antll 733 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( ( # `  { <. x ,  y
>. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
163152, 154, 1623eqtr3rd 2471 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
164146, 163breqtrd 4391 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  ( # `
 F ) )
16584, 94, 97, 133, 164ltletrd 9746 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
16684, 165gtned 9721 . . . . . . . . . 10  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  =/=  ( # `  dom  F ) )
167166ex 435 . . . . . . . . 9  |-  ( F  e.  Fin  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z )  -> 
( # `  F )  =/=  ( # `  dom  F ) ) )
168167exlimdv 1772 . . . . . . . 8  |-  ( F  e.  Fin  ->  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
169168exlimdvv 1773 . . . . . . 7  |-  ( F  e.  Fin  ->  ( E. x E. y E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
17083, 169syl5bi 220 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
171170necon4bd 2621 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
172171imp 430 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
173 dffun4 5556 . . . 4  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
17473, 172, 173sylanbrc 668 . . 3  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Fun  F )
175174ex 435 . 2  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Fun  F ) )
1763, 175impbid2 207 1  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   _Vcvv 3022    \ cdif 3376    u. cun 3377    i^i cin 3378    C_ wss 3379   (/)c0 3704   {csn 3941   {cpr 3943   <.cop 3947   class class class wbr 4366    X. cxp 4794   dom cdm 4796   Rel wrel 4801   Fun wfun 5538    Fn wfn 5539   ` cfv 5544  (class class class)co 6249    ~<_ cdom 7522   Fincfn 7524   RRcr 9489   1c1 9491    + caddc 9493    < clt 9626    <_ cle 9627   2c2 10610   NN0cn0 10820   #chash 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-card 8325  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-nn 10561  df-2 10619  df-n0 10821  df-z 10889  df-uz 11111  df-fz 11736  df-hash 12466
This theorem is referenced by:  hashfzdm  12560  hashfirdm  12562  cusgrasizeinds  25146
  Copyright terms: Public domain W3C validator