Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hasheuni Structured version   Visualization version   Unicode version

Theorem hasheuni 28906
Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni 13884. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
Assertion
Ref Expression
hasheuni  |-  ( ( A  e.  V  /\ Disj  x  e.  A  x )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
Distinct variable groups:    x, A    x, V

Proof of Theorem hasheuni
StepHypRef Expression
1 nfdisj1 4386 . . . . . . . 8  |-  F/ xDisj  x  e.  A  x
2 nfv 1761 . . . . . . . 8  |-  F/ x  A  e.  Fin
3 nfv 1761 . . . . . . . 8  |-  F/ x  A  C_  Fin
41, 2, 3nf3an 2013 . . . . . . 7  |-  F/ x
(Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )
5 simp2 1009 . . . . . . 7  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  A  e.  Fin )
6 simp3 1010 . . . . . . 7  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  A  C_  Fin )
7 simp1 1008 . . . . . . 7  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  -> Disj  x  e.  A  x
)
84, 5, 6, 7hashunif 28379 . . . . . 6  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  ( # `  U. A )  =  sum_ x  e.  A  ( # `  x ) )
9 simpl 459 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  A  e.  Fin )
10 dfss3 3422 . . . . . . . . . . 11  |-  ( A 
C_  Fin  <->  A. x  e.  A  x  e.  Fin )
11 hashcl 12538 . . . . . . . . . . . . 13  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
12 nn0re 10878 . . . . . . . . . . . . . 14  |-  ( (
# `  x )  e.  NN0  ->  ( # `  x
)  e.  RR )
13 nn0ge0 10895 . . . . . . . . . . . . . 14  |-  ( (
# `  x )  e.  NN0  ->  0  <_  (
# `  x )
)
14 elrege0 11738 . . . . . . . . . . . . . 14  |-  ( (
# `  x )  e.  ( 0 [,) +oo ) 
<->  ( ( # `  x
)  e.  RR  /\  0  <_  ( # `  x
) ) )
1512, 13, 14sylanbrc 670 . . . . . . . . . . . . 13  |-  ( (
# `  x )  e.  NN0  ->  ( # `  x
)  e.  ( 0 [,) +oo ) )
1611, 15syl 17 . . . . . . . . . . . 12  |-  ( x  e.  Fin  ->  ( # `
 x )  e.  ( 0 [,) +oo ) )
1716ralimi 2781 . . . . . . . . . . 11  |-  ( A. x  e.  A  x  e.  Fin  ->  A. x  e.  A  ( # `  x
)  e.  ( 0 [,) +oo ) )
1810, 17sylbi 199 . . . . . . . . . 10  |-  ( A 
C_  Fin  ->  A. x  e.  A  ( # `  x
)  e.  ( 0 [,) +oo ) )
1918r19.21bi 2757 . . . . . . . . 9  |-  ( ( A  C_  Fin  /\  x  e.  A )  ->  ( # `
 x )  e.  ( 0 [,) +oo ) )
2019adantll 720 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  x  e.  A
)  ->  ( # `  x
)  e.  ( 0 [,) +oo ) )
219, 20esumpfinval 28896 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> Σ* x  e.  A ( # `  x
)  =  sum_ x  e.  A  ( # `  x
) )
22213adant1 1026 . . . . . 6  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  -> Σ* x  e.  A ( # `  x )  =  sum_ x  e.  A  ( # `  x ) )
238, 22eqtr4d 2488 . . . . 5  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
24233adant1l 1260 . . . 4  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e. 
Fin  /\  A  C_  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
25243expa 1208 . . 3  |-  ( ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e.  Fin )  /\  A  C_ 
Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
26 uniexg 6588 . . . . . . . 8  |-  ( A  e.  V  ->  U. A  e.  _V )
2710notbii 298 . . . . . . . . . 10  |-  ( -.  A  C_  Fin  <->  -.  A. x  e.  A  x  e.  Fin )
28 rexnal 2836 . . . . . . . . . 10  |-  ( E. x  e.  A  -.  x  e.  Fin  <->  -.  A. x  e.  A  x  e.  Fin )
2927, 28bitr4i 256 . . . . . . . . 9  |-  ( -.  A  C_  Fin  <->  E. x  e.  A  -.  x  e.  Fin )
30 elssuni 4227 . . . . . . . . . . 11  |-  ( x  e.  A  ->  x  C_ 
U. A )
31 ssfi 7792 . . . . . . . . . . . . 13  |-  ( ( U. A  e.  Fin  /\  x  C_  U. A )  ->  x  e.  Fin )
3231expcom 437 . . . . . . . . . . . 12  |-  ( x 
C_  U. A  ->  ( U. A  e.  Fin  ->  x  e.  Fin )
)
3332con3d 139 . . . . . . . . . . 11  |-  ( x 
C_  U. A  ->  ( -.  x  e.  Fin  ->  -.  U. A  e. 
Fin ) )
3430, 33syl 17 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( -.  x  e.  Fin  ->  -.  U. A  e. 
Fin ) )
3534rexlimiv 2873 . . . . . . . . 9  |-  ( E. x  e.  A  -.  x  e.  Fin  ->  -.  U. A  e.  Fin )
3629, 35sylbi 199 . . . . . . . 8  |-  ( -.  A  C_  Fin  ->  -.  U. A  e.  Fin )
37 hashinf 12520 . . . . . . . 8  |-  ( ( U. A  e.  _V  /\ 
-.  U. A  e.  Fin )  ->  ( # `  U. A )  = +oo )
3826, 36, 37syl2an 480 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  C_  Fin )  ->  ( # `  U. A )  = +oo )
39 vex 3048 . . . . . . . . . . 11  |-  x  e. 
_V
40 hashinf 12520 . . . . . . . . . . 11  |-  ( ( x  e.  _V  /\  -.  x  e.  Fin )  ->  ( # `  x
)  = +oo )
4139, 40mpan 676 . . . . . . . . . 10  |-  ( -.  x  e.  Fin  ->  (
# `  x )  = +oo )
4241reximi 2855 . . . . . . . . 9  |-  ( E. x  e.  A  -.  x  e.  Fin  ->  E. x  e.  A  ( # `  x
)  = +oo )
4329, 42sylbi 199 . . . . . . . 8  |-  ( -.  A  C_  Fin  ->  E. x  e.  A  ( # `  x
)  = +oo )
44 nfv 1761 . . . . . . . . . 10  |-  F/ x  A  e.  V
45 nfre1 2848 . . . . . . . . . 10  |-  F/ x E. x  e.  A  ( # `  x )  = +oo
4644, 45nfan 2011 . . . . . . . . 9  |-  F/ x
( A  e.  V  /\  E. x  e.  A  ( # `  x )  = +oo )
47 simpl 459 . . . . . . . . 9  |-  ( ( A  e.  V  /\  E. x  e.  A  (
# `  x )  = +oo )  ->  A  e.  V )
48 hashf2 28905 . . . . . . . . . . 11  |-  # : _V
--> ( 0 [,] +oo )
49 ffvelrn 6020 . . . . . . . . . . 11  |-  ( (
# : _V --> ( 0 [,] +oo )  /\  x  e.  _V )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
5048, 39, 49mp2an 678 . . . . . . . . . 10  |-  ( # `  x )  e.  ( 0 [,] +oo )
5150a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  E. x  e.  A  ( # `  x )  = +oo )  /\  x  e.  A )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
52 simpr 463 . . . . . . . . 9  |-  ( ( A  e.  V  /\  E. x  e.  A  (
# `  x )  = +oo )  ->  E. x  e.  A  ( # `  x
)  = +oo )
5346, 47, 51, 52esumpinfval 28894 . . . . . . . 8  |-  ( ( A  e.  V  /\  E. x  e.  A  (
# `  x )  = +oo )  -> Σ* x  e.  A
( # `  x )  = +oo )
5443, 53sylan2 477 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  C_  Fin )  -> Σ* x  e.  A ( # `  x )  = +oo )
5538, 54eqtr4d 2488 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  C_  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
56553adant2 1027 . . . . 5  |-  ( ( A  e.  V  /\  A  e.  Fin  /\  -.  A  C_  Fin )  -> 
( # `  U. A
)  = Σ* x  e.  A
( # `  x ) )
57563adant1r 1261 . . . 4  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e. 
Fin  /\  -.  A  C_ 
Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
58573expa 1208 . . 3  |-  ( ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e.  Fin )  /\  -.  A  C_  Fin )  -> 
( # `  U. A
)  = Σ* x  e.  A
( # `  x ) )
5925, 58pm2.61dan 800 . 2  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e. 
Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
60 pwfi 7869 . . . . . . 7  |-  ( U. A  e.  Fin  <->  ~P U. A  e.  Fin )
61 pwuni 4631 . . . . . . . 8  |-  A  C_  ~P U. A
62 ssfi 7792 . . . . . . . 8  |-  ( ( ~P U. A  e. 
Fin  /\  A  C_  ~P U. A )  ->  A  e.  Fin )
6361, 62mpan2 677 . . . . . . 7  |-  ( ~P
U. A  e.  Fin  ->  A  e.  Fin )
6460, 63sylbi 199 . . . . . 6  |-  ( U. A  e.  Fin  ->  A  e.  Fin )
6564con3i 141 . . . . 5  |-  ( -.  A  e.  Fin  ->  -. 
U. A  e.  Fin )
6626, 65, 37syl2an 480 . . . 4  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( # `  U. A )  = +oo )
67 nftru 1677 . . . . . . . . 9  |-  F/ x T.
68 unrab 3714 . . . . . . . . . . 11  |-  ( { x  e.  A  | 
( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x
)  =  0 } )  =  { x  e.  A  |  (
( # `  x )  =  0  \/  -.  ( # `  x )  =  0 ) }
69 exmid 417 . . . . . . . . . . . . 13  |-  ( (
# `  x )  =  0  \/  -.  ( # `  x )  =  0 )
7069rgenw 2749 . . . . . . . . . . . 12  |-  A. x  e.  A  ( ( # `
 x )  =  0  \/  -.  ( # `
 x )  =  0 )
71 rabid2 2968 . . . . . . . . . . . 12  |-  ( A  =  { x  e.  A  |  ( (
# `  x )  =  0  \/  -.  ( # `  x )  =  0 ) }  <->  A. x  e.  A  ( ( # `  x
)  =  0  \/ 
-.  ( # `  x
)  =  0 ) )
7270, 71mpbir 213 . . . . . . . . . . 11  |-  A  =  { x  e.  A  |  ( ( # `  x )  =  0  \/  -.  ( # `  x )  =  0 ) }
7368, 72eqtr4i 2476 . . . . . . . . . 10  |-  ( { x  e.  A  | 
( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x
)  =  0 } )  =  A
7473a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( { x  e.  A  |  ( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x )  =  0 } )  =  A )
7567, 74esumeq1d 28856 . . . . . . . 8  |-  ( T. 
-> Σ* x  e.  ( {
x  e.  A  | 
( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x
)  =  0 } ) ( # `  x
)  = Σ* x  e.  A
( # `  x ) )
7675trud 1453 . . . . . . 7  |- Σ* x  e.  ( { x  e.  A  |  ( # `  x
)  =  0 }  u.  { x  e.  A  |  -.  ( # `
 x )  =  0 } ) (
# `  x )  = Σ* x  e.  A ( # `
 x )
77 nfrab1 2971 . . . . . . . 8  |-  F/_ x { x  e.  A  |  ( # `  x
)  =  0 }
78 nfrab1 2971 . . . . . . . 8  |-  F/_ x { x  e.  A  |  -.  ( # `  x
)  =  0 }
79 rabexg 4553 . . . . . . . 8  |-  ( A  e.  V  ->  { x  e.  A  |  ( # `
 x )  =  0 }  e.  _V )
80 rabexg 4553 . . . . . . . 8  |-  ( A  e.  V  ->  { x  e.  A  |  -.  ( # `  x )  =  0 }  e.  _V )
81 rabnc 3756 . . . . . . . . 9  |-  ( { x  e.  A  | 
( # `  x )  =  0 }  i^i  { x  e.  A  |  -.  ( # `  x
)  =  0 } )  =  (/)
8281a1i 11 . . . . . . . 8  |-  ( A  e.  V  ->  ( { x  e.  A  |  ( # `  x
)  =  0 }  i^i  { x  e.  A  |  -.  ( # `
 x )  =  0 } )  =  (/) )
8350a1i 11 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  { x  e.  A  |  ( # `
 x )  =  0 } )  -> 
( # `  x )  e.  ( 0 [,] +oo ) )
8450a1i 11 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  { x  e.  A  |  -.  ( # `  x )  =  0 } )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
8544, 77, 78, 79, 80, 82, 83, 84esumsplit 28874 . . . . . . 7  |-  ( A  e.  V  -> Σ* x  e.  ( { x  e.  A  |  ( # `  x
)  =  0 }  u.  { x  e.  A  |  -.  ( # `
 x )  =  0 } ) (
# `  x )  =  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) ) )
8676, 85syl5eqr 2499 . . . . . 6  |-  ( A  e.  V  -> Σ* x  e.  A
( # `  x )  =  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) ) )
8786adantr 467 . . . . 5  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  A (
# `  x )  =  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) ) )
88 nfv 1761 . . . . . . 7  |-  F/ x
( A  e.  V  /\  -.  A  e.  Fin )
8980adantr 467 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  { x  e.  A  |  -.  ( # `
 x )  =  0 }  e.  _V )
90 simpr 463 . . . . . . . . 9  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  -.  A  e.  Fin )
91 dfrab3 3718 . . . . . . . . . . . 12  |-  { x  e.  A  |  ( # `
 x )  =  0 }  =  ( A  i^i  { x  |  ( # `  x
)  =  0 } )
92 hasheq0 12544 . . . . . . . . . . . . . . . 16  |-  ( x  e.  _V  ->  (
( # `  x )  =  0  <->  x  =  (/) ) )
9339, 92ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( (
# `  x )  =  0  <->  x  =  (/) )
9493abbii 2567 . . . . . . . . . . . . . 14  |-  { x  |  ( # `  x
)  =  0 }  =  { x  |  x  =  (/) }
95 df-sn 3969 . . . . . . . . . . . . . 14  |-  { (/) }  =  { x  |  x  =  (/) }
9694, 95eqtr4i 2476 . . . . . . . . . . . . 13  |-  { x  |  ( # `  x
)  =  0 }  =  { (/) }
9796ineq2i 3631 . . . . . . . . . . . 12  |-  ( A  i^i  { x  |  ( # `  x
)  =  0 } )  =  ( A  i^i  { (/) } )
9891, 97eqtri 2473 . . . . . . . . . . 11  |-  { x  e.  A  |  ( # `
 x )  =  0 }  =  ( A  i^i  { (/) } )
99 snfi 7650 . . . . . . . . . . . 12  |-  { (/) }  e.  Fin
100 inss2 3653 . . . . . . . . . . . 12  |-  ( A  i^i  { (/) } ) 
C_  { (/) }
101 ssfi 7792 . . . . . . . . . . . 12  |-  ( ( { (/) }  e.  Fin  /\  ( A  i^i  { (/)
} )  C_  { (/) } )  ->  ( A  i^i  { (/) } )  e. 
Fin )
10299, 100, 101mp2an 678 . . . . . . . . . . 11  |-  ( A  i^i  { (/) } )  e.  Fin
10398, 102eqeltri 2525 . . . . . . . . . 10  |-  { x  e.  A  |  ( # `
 x )  =  0 }  e.  Fin
104103a1i 11 . . . . . . . . 9  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  { x  e.  A  |  ( # `  x )  =  0 }  e.  Fin )
105 difinf 7841 . . . . . . . . 9  |-  ( ( -.  A  e.  Fin  /\ 
{ x  e.  A  |  ( # `  x
)  =  0 }  e.  Fin )  ->  -.  ( A  \  {
x  e.  A  | 
( # `  x )  =  0 } )  e.  Fin )
10690, 104, 105syl2anc 667 . . . . . . . 8  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  -.  ( A  \  { x  e.  A  |  ( # `  x
)  =  0 } )  e.  Fin )
107 notrab 3720 . . . . . . . . 9  |-  ( A 
\  { x  e.  A  |  ( # `  x )  =  0 } )  =  {
x  e.  A  |  -.  ( # `  x
)  =  0 }
108107eleq1i 2520 . . . . . . . 8  |-  ( ( A  \  { x  e.  A  |  ( # `
 x )  =  0 } )  e. 
Fin 
<->  { x  e.  A  |  -.  ( # `  x
)  =  0 }  e.  Fin )
109106, 108sylnib 306 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  -.  { x  e.  A  |  -.  ( # `  x )  =  0 }  e.  Fin )
11050a1i 11 . . . . . . 7  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
11139a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  x  e.  _V )
112 simpr 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 } )
113 rabid 2967 . . . . . . . . . . 11  |-  ( x  e.  { x  e.  A  |  -.  ( # `
 x )  =  0 }  <->  ( x  e.  A  /\  -.  ( # `
 x )  =  0 ) )
114112, 113sylib 200 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  ( x  e.  A  /\  -.  ( # `
 x )  =  0 ) )
115114simprd 465 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  -.  ( # `
 x )  =  0 )
11693biimpri 210 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( # `  x )  =  0 )
117116necon3bi 2650 . . . . . . . . 9  |-  ( -.  ( # `  x
)  =  0  ->  x  =/=  (/) )
118115, 117syl 17 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  x  =/=  (/) )
119 hashge1 12568 . . . . . . . 8  |-  ( ( x  e.  _V  /\  x  =/=  (/) )  ->  1  <_  ( # `  x
) )
120111, 118, 119syl2anc 667 . . . . . . 7  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  1  <_  (
# `  x )
)
121 1re 9642 . . . . . . . . 9  |-  1  e.  RR
122121rexri 9693 . . . . . . . 8  |-  1  e.  RR*
123122a1i 11 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  1  e.  RR* )
124 0lt1 10136 . . . . . . . 8  |-  0  <  1
125124a1i 11 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  0  <  1
)
12688, 78, 89, 109, 110, 120, 123, 125esumpinfsum 28898 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  -.  ( # `  x )  =  0 }  ( # `
 x )  = +oo )
127126oveq2d 6306 . . . . 5  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) )  =  (Σ* x  e.  { x  e.  A  |  ( # `  x )  =  0 }  ( # `  x
) +e +oo ) )
128 iccssxr 11717 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
12979adantr 467 . . . . . . . 8  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  { x  e.  A  |  ( # `  x )  =  0 }  e.  _V )
13050a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  | 
( # `  x )  =  0 } )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
131130ralrimiva 2802 . . . . . . . 8  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  A. x  e.  {
x  e.  A  | 
( # `  x )  =  0 }  ( # `
 x )  e.  ( 0 [,] +oo ) )
13277esumcl 28851 . . . . . . . 8  |-  ( ( { x  e.  A  |  ( # `  x
)  =  0 }  e.  _V  /\  A. x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  ( 0 [,] +oo )
)  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  ( 0 [,] +oo )
)
133129, 131, 132syl2anc 667 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  ( 0 [,] +oo )
)
134128, 133sseldi 3430 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  RR* )
135 xrge0neqmnf 11737 . . . . . . 7  |-  (Σ* x  e. 
{ x  e.  A  |  ( # `  x
)  =  0 }  ( # `  x
)  e.  ( 0 [,] +oo )  -> Σ* x  e.  { x  e.  A  |  ( # `  x
)  =  0 }  ( # `  x
)  =/= -oo )
136133, 135syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  =/= -oo )
137 xaddpnf1 11519 . . . . . 6  |-  ( (Σ* x  e.  { x  e.  A  |  ( # `  x )  =  0 }  ( # `  x
)  e.  RR*  /\ Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  =/= -oo )  ->  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +e +oo )  = +oo )
138134, 136, 137syl2anc 667 . . . . 5  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +e +oo )  = +oo )
13987, 127, 1383eqtrd 2489 . . . 4  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  A (
# `  x )  = +oo )
14066, 139eqtr4d 2488 . . 3  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
141140adantlr 721 . 2  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  -.  A  e.  Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
14259, 141pm2.61dan 800 1  |-  ( ( A  e.  V  /\ Disj  x  e.  A  x )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444   T. wtru 1445    e. wcel 1887   {cab 2437    =/= wne 2622   A.wral 2737   E.wrex 2738   {crab 2741   _Vcvv 3045    \ cdif 3401    u. cun 3402    i^i cin 3403    C_ wss 3404   (/)c0 3731   ~Pcpw 3951   {csn 3968   U.cuni 4198  Disj wdisj 4373   class class class wbr 4402   -->wf 5578   ` cfv 5582  (class class class)co 6290   Fincfn 7569   RRcr 9538   0cc0 9539   1c1 9540   +oocpnf 9672   -oocmnf 9673   RR*cxr 9674    < clt 9675    <_ cle 9676   NN0cn0 10869   +ecxad 11407   [,)cico 11637   [,]cicc 11638   #chash 12515   sum_csu 13752  Σ*cesum 28848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-disj 4374  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-ef 14121  df-sin 14123  df-cos 14124  df-pi 14126  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-ordt 15399  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-ps 16446  df-tsr 16447  df-plusf 16487  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-mhm 16582  df-submnd 16583  df-grp 16673  df-minusg 16674  df-sbg 16675  df-mulg 16676  df-subg 16814  df-cntz 16971  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-cring 17783  df-subrg 18006  df-abv 18045  df-lmod 18093  df-scaf 18094  df-sra 18395  df-rgmod 18396  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-tmd 21087  df-tgp 21088  df-tsms 21141  df-trg 21174  df-xms 21335  df-ms 21336  df-tms 21337  df-nm 21597  df-ngp 21598  df-nrg 21600  df-nlm 21601  df-ii 21909  df-cncf 21910  df-limc 22821  df-dv 22822  df-log 23506  df-esum 28849
This theorem is referenced by:  cntmeas  29048
  Copyright terms: Public domain W3C validator