MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdvds Unicode version

Theorem hashdvds 13119
Description: The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
hashdvds.1  |-  ( ph  ->  N  e.  NN )
hashdvds.2  |-  ( ph  ->  A  e.  ZZ )
hashdvds.3  |-  ( ph  ->  B  e.  ( ZZ>= `  ( A  -  1
) ) )
hashdvds.4  |-  ( ph  ->  C  e.  ZZ )
Assertion
Ref Expression
hashdvds  |-  ( ph  ->  ( # `  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } )  =  ( ( |_ `  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, N
Allowed substitution hint:    ph( x)

Proof of Theorem hashdvds
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 10267 . . . . . . 7  |-  1  e.  ZZ
21a1i 11 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
3 hashdvds.3 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ( ZZ>= `  ( A  -  1
) ) )
4 eluzelz 10452 . . . . . . . . . . . 12  |-  ( B  e.  ( ZZ>= `  ( A  -  1 ) )  ->  B  e.  ZZ )
53, 4syl 16 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ZZ )
6 hashdvds.4 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ZZ )
75, 6zsubcld 10336 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  C
)  e.  ZZ )
87zred 10331 . . . . . . . . 9  |-  ( ph  ->  ( B  -  C
)  e.  RR )
9 hashdvds.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
108, 9nndivred 10004 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  C )  /  N
)  e.  RR )
1110flcld 11162 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  ZZ )
12 hashdvds.2 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
13 peano2zm 10276 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
1412, 13syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  1 )  e.  ZZ )
1514, 6zsubcld 10336 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  e.  ZZ )
1615zred 10331 . . . . . . . . 9  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  e.  RR )
1716, 9nndivred 10004 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  /  N
)  e.  RR )
1817flcld 11162 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ )
1911, 18zsubcld 10336 . . . . . 6  |-  ( ph  ->  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  ZZ )
20 fzen 11028 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  ZZ  /\  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  e.  ZZ )  ->  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  (
( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ... ( ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) ) )
212, 19, 18, 20syl3anc 1184 . . . . 5  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( 1  +  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ... ( ( ( |_ `  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) )  +  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) ) ) ) )
22 ax-1cn 9004 . . . . . . 7  |-  1  e.  CC
2318zcnd 10332 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  CC )
24 addcom 9208 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  e.  CC )  -> 
( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) )
2522, 23, 24sylancr 645 . . . . . 6  |-  ( ph  ->  ( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) )
2611zcnd 10332 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  CC )
2726, 23npcand 9371 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( |_ `  ( ( B  -  C )  /  N
) ) )
2825, 27oveq12d 6058 . . . . 5  |-  ( ph  ->  ( ( 1  +  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) ) ) ... (
( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) )  =  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) ) )
2921, 28breqtrd 4196 . . . 4  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) ) )
30 ovex 6065 . . . . . 6  |-  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  e. 
_V
3130a1i 11 . . . . 5  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  e.  _V )
32 fzfi 11266 . . . . . 6  |-  ( A ... B )  e. 
Fin
33 rabexg 4313 . . . . . 6  |-  ( ( A ... B )  e.  Fin  ->  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  e.  _V )
3432, 33mp1i 12 . . . . 5  |-  ( ph  ->  { x  e.  ( A ... B )  |  N  ||  (
x  -  C ) }  e.  _V )
35 elfzle1 11016 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  z )
3635adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  z
)
37 elfzelz 11015 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  z  e.  ZZ )
38 zltp1le 10281 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z  <->  ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  z ) )
3918, 37, 38syl2an 464 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
z  <->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  z
) )
4036, 39mpbird 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z
)
41 fllt 11170 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  RR  /\  z  e.  ZZ )  ->  ( ( ( ( A  -  1 )  -  C )  /  N )  <  z  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  <  z ) )
4217, 37, 41syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( ( A  - 
1 )  -  C
)  /  N )  <  z  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z
) )
4340, 42mpbird 224 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( A  -  1 )  -  C )  /  N )  < 
z )
4416adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( A  -  1 )  -  C )  e.  RR )
4537adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  ZZ )
4645zred 10331 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  RR )
479nnred 9971 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  RR )
489nngt0d 9999 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  N )
4947, 48jca 519 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  e.  RR  /\  0  <  N ) )
5049adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
51 ltdivmul2 9841 . . . . . . . . . . . 12  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  z  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( ( ( A  -  1 )  -  C )  /  N )  <  z  <->  ( ( A  -  1 )  -  C )  <  ( z  x.  N ) ) )
5244, 46, 50, 51syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( ( A  - 
1 )  -  C
)  /  N )  <  z  <->  ( ( A  -  1 )  -  C )  < 
( z  x.  N
) ) )
5343, 52mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( A  -  1 )  -  C )  < 
( z  x.  N
) )
5414zred 10331 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  -  1 )  e.  RR )
5554adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  -  1 )  e.  RR )
566zred 10331 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR )
5756adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  RR )
589nnzd 10330 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ZZ )
5958adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  e.  ZZ )
6045, 59zmulcld 10337 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  ZZ )
6160zred 10331 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  RR )
6255, 57, 61ltsubaddd 9578 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( A  -  1 )  -  C )  <  ( z  x.  N )  <->  ( A  -  1 )  < 
( ( z  x.  N )  +  C
) ) )
6353, 62mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  -  1 )  < 
( ( z  x.  N )  +  C
) )
6412adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  A  e.  ZZ )
656adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  ZZ )
6660, 65zaddcld 10335 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e.  ZZ )
67 zlem1lt 10283 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( z  x.  N )  +  C
)  e.  ZZ )  ->  ( A  <_ 
( ( z  x.  N )  +  C
)  <->  ( A  - 
1 )  <  (
( z  x.  N
)  +  C ) ) )
6864, 66, 67syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  <_  ( ( z  x.  N )  +  C
)  <->  ( A  - 
1 )  <  (
( z  x.  N
)  +  C ) ) )
6963, 68mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  A  <_  ( ( z  x.  N
)  +  C ) )
70 elfzle2 11017 . . . . . . . . . . . 12  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  z  <_  ( |_ `  (
( B  -  C
)  /  N ) ) )
7170adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  <_  ( |_ `  ( ( B  -  C )  /  N ) ) )
72 flge 11169 . . . . . . . . . . . 12  |-  ( ( ( ( B  -  C )  /  N
)  e.  RR  /\  z  e.  ZZ )  ->  ( z  <_  (
( B  -  C
)  /  N )  <-> 
z  <_  ( |_ `  ( ( B  -  C )  /  N
) ) ) )
7310, 37, 72syl2an 464 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  <_  ( ( B  -  C )  /  N
)  <->  z  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) )
7471, 73mpbird 224 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  <_  ( ( B  -  C
)  /  N ) )
758adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( B  -  C )  e.  RR )
76 lemuldiv 9845 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
z  x.  N )  <_  ( B  -  C )  <->  z  <_  ( ( B  -  C
)  /  N ) ) )
7746, 75, 50, 76syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  <_  ( B  -  C )  <->  z  <_  ( ( B  -  C
)  /  N ) ) )
7874, 77mpbird 224 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  <_  ( B  -  C )
)
795zred 10331 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
8079adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  B  e.  RR )
81 leaddsub 9460 . . . . . . . . . 10  |-  ( ( ( z  x.  N
)  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  (
( ( z  x.  N )  +  C
)  <_  B  <->  ( z  x.  N )  <_  ( B  -  C )
) )
8261, 57, 80, 81syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  <_  B  <->  ( z  x.  N )  <_  ( B  -  C )
) )
8378, 82mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  <_  B )
845adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  B  e.  ZZ )
85 elfz 11005 . . . . . . . . 9  |-  ( ( ( ( z  x.  N )  +  C
)  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( z  x.  N )  +  C
)  e.  ( A ... B )  <->  ( A  <_  ( ( z  x.  N )  +  C
)  /\  ( (
z  x.  N )  +  C )  <_  B ) ) )
8666, 64, 84, 85syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  e.  ( A ... B )  <->  ( A  <_  ( ( z  x.  N )  +  C
)  /\  ( (
z  x.  N )  +  C )  <_  B ) ) )
8769, 83, 86mpbir2and 889 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e.  ( A ... B
) )
88 dvdsmul2 12827 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( z  x.  N ) )
8945, 59, 88syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  ||  (
z  x.  N ) )
9060zcnd 10332 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  CC )
916zcnd 10332 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
9291adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  CC )
9390, 92pncand 9368 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  -  C )  =  ( z  x.  N
) )
9489, 93breqtrrd 4198 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  ||  (
( ( z  x.  N )  +  C
)  -  C ) )
95 oveq1 6047 . . . . . . . . 9  |-  ( x  =  ( ( z  x.  N )  +  C )  ->  (
x  -  C )  =  ( ( ( z  x.  N )  +  C )  -  C ) )
9695breq2d 4184 . . . . . . . 8  |-  ( x  =  ( ( z  x.  N )  +  C )  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
( ( z  x.  N )  +  C
)  -  C ) ) )
9796elrab 3052 . . . . . . 7  |-  ( ( ( z  x.  N
)  +  C )  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  <->  ( (
( z  x.  N
)  +  C )  e.  ( A ... B )  /\  N  ||  ( ( ( z  x.  N )  +  C )  -  C
) ) )
9887, 94, 97sylanbrc 646 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e. 
{ x  e.  ( A ... B )  |  N  ||  (
x  -  C ) } )
9998ex 424 . . . . 5  |-  ( ph  ->  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) )  ->  ( ( z  x.  N )  +  C )  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
100 oveq1 6047 . . . . . . . 8  |-  ( x  =  y  ->  (
x  -  C )  =  ( y  -  C ) )
101100breq2d 4184 . . . . . . 7  |-  ( x  =  y  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
y  -  C ) ) )
102101elrab 3052 . . . . . 6  |-  ( y  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  <->  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )
10354adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  -  1 )  e.  RR )
104 elfzelz 11015 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A ... B )  ->  y  e.  ZZ )
105104ad2antrl 709 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  ZZ )
106105zred 10331 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  RR )
10756adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  C  e.  RR )
108 elfzle1 11016 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A ... B )  ->  A  <_  y )
109108ad2antrl 709 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  A  <_  y )
11012adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  A  e.  ZZ )
111 zlem1lt 10283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  <_  y  <->  ( A  -  1 )  <  y ) )
112110, 105, 111syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  <_  y  <->  ( A  -  1 )  < 
y ) )
113109, 112mpbid 202 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  -  1 )  <  y )
114103, 106, 107, 113ltsub1dd 9594 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( A  -  1 )  -  C )  <  ( y  -  C ) )
11516adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( A  -  1 )  -  C )  e.  RR )
1166adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  C  e.  ZZ )
117105, 116zsubcld 10336 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  ZZ )
118117zred 10331 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  RR )
11949adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( N  e.  RR  /\  0  <  N ) )
120 ltdiv1 9830 . . . . . . . . . . . 12  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  ( y  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
( A  -  1 )  -  C )  <  ( y  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
) ) )
121115, 118, 119, 120syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( A  - 
1 )  -  C
)  <  ( y  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
) ) )
122114, 121mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( A  - 
1 )  -  C
)  /  N )  <  ( ( y  -  C )  /  N ) )
12317adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( A  - 
1 )  -  C
)  /  N )  e.  RR )
124 simprr 734 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  ||  ( y  -  C
) )
12558adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  e.  ZZ )
1269nnne0d 10000 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  =/=  0 )
127126adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  =/=  0 )
128 dvdsval2 12810 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  (
y  -  C )  e.  ZZ )  -> 
( N  ||  (
y  -  C )  <-> 
( ( y  -  C )  /  N
)  e.  ZZ ) )
129125, 127, 117, 128syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( N  ||  ( y  -  C )  <->  ( (
y  -  C )  /  N )  e.  ZZ ) )
130124, 129mpbid 202 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  e.  ZZ )
131 fllt 11170 . . . . . . . . . . 11  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  RR  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( ( ( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
)  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  (
( y  -  C
)  /  N ) ) )
132123, 130, 131syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( ( A  -  1 )  -  C )  /  N
)  <  ( (
y  -  C )  /  N )  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  (
( y  -  C
)  /  N ) ) )
133122, 132mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
( ( y  -  C )  /  N
) )
13418adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  e.  ZZ )
135 zltp1le 10281 . . . . . . . . . 10  |-  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
( ( y  -  C )  /  N
)  <->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N ) ) )
136134, 130, 135syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  <  ( ( y  -  C )  /  N )  <->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N ) ) )
137133, 136mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  ( ( y  -  C )  /  N ) )
13879adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  B  e.  RR )
139 elfzle2 11017 . . . . . . . . . . . 12  |-  ( y  e.  ( A ... B )  ->  y  <_  B )
140139ad2antrl 709 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  <_  B )
141106, 138, 107, 140lesub1dd 9598 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  <_  ( B  -  C ) )
1428adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( B  -  C )  e.  RR )
143 lediv1 9831 . . . . . . . . . . 11  |-  ( ( ( y  -  C
)  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
y  -  C )  <_  ( B  -  C )  <->  ( (
y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
144118, 142, 119, 143syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  <_  ( B  -  C )  <->  ( (
y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
145141, 144mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  <_  ( ( B  -  C )  /  N ) )
14610adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( B  -  C
)  /  N )  e.  RR )
147 flge 11169 . . . . . . . . . 10  |-  ( ( ( ( B  -  C )  /  N
)  e.  RR  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( ( y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
)  <->  ( ( y  -  C )  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) )
148146, 130, 147syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( y  -  C )  /  N
)  <_  ( ( B  -  C )  /  N )  <->  ( (
y  -  C )  /  N )  <_ 
( |_ `  (
( B  -  C
)  /  N ) ) ) )
149145, 148mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N
) ) )
15018peano2zd 10334 . . . . . . . . . 10  |-  ( ph  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 )  e.  ZZ )
151150adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  e.  ZZ )
15211adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( |_ `  ( ( B  -  C )  /  N ) )  e.  ZZ )
153 elfz 11005 . . . . . . . . 9  |-  ( ( ( ( y  -  C )  /  N
)  e.  ZZ  /\  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 )  e.  ZZ  /\  ( |_ `  ( ( B  -  C )  /  N ) )  e.  ZZ )  -> 
( ( ( y  -  C )  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) )  <-> 
( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N )  /\  ( ( y  -  C )  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) ) )
154130, 151, 152, 153syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( y  -  C )  /  N
)  e.  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  <->  ( (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  ( ( y  -  C )  /  N )  /\  (
( y  -  C
)  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N
) ) ) ) )
155137, 149, 154mpbir2and 889 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) ) )
156155ex 424 . . . . . 6  |-  ( ph  ->  ( ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) )  ->  ( (
y  -  C )  /  N )  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) ) )
157102, 156syl5bi 209 . . . . 5  |-  ( ph  ->  ( y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) }  ->  ( ( y  -  C )  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) ) ) )
158102anbi2i 676 . . . . . . 7  |-  ( ( z  e.  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  /\  y  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )
159117zcnd 10332 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  CC )
160159adantrl 697 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( y  -  C
)  e.  CC )
16145zcnd 10332 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  CC )
162161adantrr 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
z  e.  CC )
1639nncnd 9972 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  CC )
164163adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  N  e.  CC )
165126adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  N  =/=  0 )
166160, 162, 164, 165divmul3d 9780 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( ( y  -  C )  /  N )  =  z  <-> 
( y  -  C
)  =  ( z  x.  N ) ) )
167105zcnd 10332 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  CC )
168167adantrl 697 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
y  e.  CC )
16991adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  C  e.  CC )
17090adantrr 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( z  x.  N
)  e.  CC )
171168, 169, 170subadd2d 9386 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( y  -  C )  =  ( z  x.  N )  <-> 
( ( z  x.  N )  +  C
)  =  y ) )
172166, 171bitrd 245 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( ( y  -  C )  /  N )  =  z  <-> 
( ( z  x.  N )  +  C
)  =  y ) )
173 eqcom 2406 . . . . . . . 8  |-  ( z  =  ( ( y  -  C )  /  N )  <->  ( (
y  -  C )  /  N )  =  z )
174 eqcom 2406 . . . . . . . 8  |-  ( y  =  ( ( z  x.  N )  +  C )  <->  ( (
z  x.  N )  +  C )  =  y )
175172, 173, 1743bitr4g 280 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( z  =  ( ( y  -  C
)  /  N )  <-> 
y  =  ( ( z  x.  N )  +  C ) ) )
176158, 175sylan2b 462 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )  ->  (
z  =  ( ( y  -  C )  /  N )  <->  y  =  ( ( z  x.  N )  +  C
) ) )
177176ex 424 . . . . 5  |-  ( ph  ->  ( ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } )  ->  ( z  =  ( ( y  -  C )  /  N )  <->  y  =  ( ( z  x.  N )  +  C
) ) ) )
17831, 34, 99, 157, 177en3d 7103 . . . 4  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) 
~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
179 entr 7118 . . . 4  |-  ( ( ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  /\  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) 
~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  -> 
( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
18029, 178, 179syl2anc 643 . . 3  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
181 fzfi 11266 . . . 4  |-  ( 1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  e.  Fin
182 ssrab2 3388 . . . . 5  |-  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  C_  ( A ... B )
183 ssfi 7288 . . . . 5  |-  ( ( ( A ... B
)  e.  Fin  /\  { x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } 
C_  ( A ... B ) )  ->  { x  e.  ( A ... B )  |  N  ||  ( x  -  C ) }  e.  Fin )
18432, 182, 183mp2an 654 . . . 4  |-  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  e.  Fin
185 hashen 11586 . . . 4  |-  ( ( ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  e.  Fin  /\  { x  e.  ( A ... B )  |  N  ||  ( x  -  C ) }  e.  Fin )  -> 
( ( # `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( # `  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } )  <->  ( 1 ... ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } ) )
186181, 184, 185mp2an 654 . . 3  |-  ( (
# `  ( 1 ... ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  (
# `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( 1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } )
187180, 186sylibr 204 . 2  |-  ( ph  ->  ( # `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( # `  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
188 eluzle 10454 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  ( A  -  1 ) )  ->  ( A  -  1 )  <_  B )
1893, 188syl 16 . . . . . 6  |-  ( ph  ->  ( A  -  1 )  <_  B )
190 zre 10242 . . . . . . . 8  |-  ( ( A  -  1 )  e.  ZZ  ->  ( A  -  1 )  e.  RR )
191 zre 10242 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  RR )
192 zre 10242 . . . . . . . 8  |-  ( C  e.  ZZ  ->  C  e.  RR )
193 lesub1 9478 . . . . . . . 8  |-  ( ( ( A  -  1 )  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  -  1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_ 
( B  -  C
) ) )
194190, 191, 192, 193syl3an 1226 . . . . . . 7  |-  ( ( ( A  -  1 )  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  -  1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_ 
( B  -  C
) ) )
19514, 5, 6, 194syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( A  - 
1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_  ( B  -  C ) ) )
196189, 195mpbid 202 . . . . 5  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  <_  ( B  -  C ) )
197 lediv1 9831 . . . . . 6  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
( A  -  1 )  -  C )  <_  ( B  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
19816, 8, 49, 197syl3anc 1184 . . . . 5  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  <_  ( B  -  C )  <->  ( ( ( A  - 
1 )  -  C
)  /  N )  <_  ( ( B  -  C )  /  N ) ) )
199196, 198mpbid 202 . . . 4  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  /  N
)  <_  ( ( B  -  C )  /  N ) )
200 flword2 11175 . . . 4  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  RR  /\  ( ( B  -  C )  /  N
)  e.  RR  /\  ( ( ( A  -  1 )  -  C )  /  N
)  <_  ( ( B  -  C )  /  N ) )  -> 
( |_ `  (
( B  -  C
)  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
20117, 10, 199, 200syl3anc 1184 . . 3  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
202 uznn0sub 10473 . . 3  |-  ( ( |_ `  ( ( B  -  C )  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  ->  ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  NN0 )
203 hashfz1 11585 . . 3  |-  ( ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  NN0  ->  ( # `  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
204201, 202, 2033syl 19 . 2  |-  ( ph  ->  ( # `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
205187, 204eqtr3d 2438 1  |-  ( ph  ->  ( # `  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } )  =  ( ( |_ `  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   {crab 2670   _Vcvv 2916    C_ wss 3280   class class class wbr 4172   ` cfv 5413  (class class class)co 6040    ~~ cen 7065   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   |_cfl 11156   #chash 11573    || cdivides 12807
This theorem is referenced by:  phiprmpw  13120  prmreclem4  13242  ppiub  20941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fl 11157  df-hash 11574  df-dvds 12808
  Copyright terms: Public domain W3C validator