MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc Structured version   Unicode version

Theorem hashbc 12481
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashbc  |-  ( ( A  e.  Fin  /\  K  e.  ZZ )  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
Distinct variable groups:    x, A    x, K

Proof of Theorem hashbc
Dummy variables  j 
k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5856 . . . . . 6  |-  ( w  =  (/)  ->  ( # `  w )  =  (
# `  (/) ) )
21oveq1d 6296 . . . . 5  |-  ( w  =  (/)  ->  ( (
# `  w )  _C  k )  =  ( ( # `  (/) )  _C  k ) )
3 pweq 4000 . . . . . . 7  |-  ( w  =  (/)  ->  ~P w  =  ~P (/) )
4 rabeq 3089 . . . . . . 7  |-  ( ~P w  =  ~P (/)  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
53, 4syl 16 . . . . . 6  |-  ( w  =  (/)  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
65fveq2d 5860 . . . . 5  |-  ( w  =  (/)  ->  ( # `  { x  e.  ~P w  |  ( # `  x
)  =  k } )  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
72, 6eqeq12d 2465 . . . 4  |-  ( w  =  (/)  ->  ( ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) ) )
87ralbidv 2882 . . 3  |-  ( w  =  (/)  ->  ( A. k  e.  ZZ  (
( # `  w )  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) ) )
9 fveq2 5856 . . . . . 6  |-  ( w  =  y  ->  ( # `
 w )  =  ( # `  y
) )
109oveq1d 6296 . . . . 5  |-  ( w  =  y  ->  (
( # `  w )  _C  k )  =  ( ( # `  y
)  _C  k ) )
11 pweq 4000 . . . . . . 7  |-  ( w  =  y  ->  ~P w  =  ~P y
)
12 rabeq 3089 . . . . . . 7  |-  ( ~P w  =  ~P y  ->  { x  e.  ~P w  |  ( # `  x
)  =  k }  =  { x  e. 
~P y  |  (
# `  x )  =  k } )
1311, 12syl 16 . . . . . 6  |-  ( w  =  y  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P y  |  ( # `  x
)  =  k } )
1413fveq2d 5860 . . . . 5  |-  ( w  =  y  ->  ( # `
 { x  e. 
~P w  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } ) )
1510, 14eqeq12d 2465 . . . 4  |-  ( w  =  y  ->  (
( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  y )  _C  k
)  =  ( # `  { x  e.  ~P y  |  ( # `  x
)  =  k } ) ) )
1615ralbidv 2882 . . 3  |-  ( w  =  y  ->  ( A. k  e.  ZZ  ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  y
)  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } ) ) )
17 fveq2 5856 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( # `  w
)  =  ( # `  ( y  u.  {
z } ) ) )
1817oveq1d 6296 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( # `  w )  _C  k
)  =  ( (
# `  ( y  u.  { z } ) )  _C  k ) )
19 pweq 4000 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ~P w  =  ~P ( y  u. 
{ z } ) )
20 rabeq 3089 . . . . . . 7  |-  ( ~P w  =  ~P (
y  u.  { z } )  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } )
2119, 20syl 16 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  { x  e. 
~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } )
2221fveq2d 5860 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  =  ( # `  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } ) )
2318, 22eqeq12d 2465 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( (
# `  w )  _C  k )  =  (
# `  { x  e.  ~P w  |  (
# `  x )  =  k } )  <-> 
( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) ) )
2423ralbidv 2882 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A. k  e.  ZZ  ( ( # `  w )  _C  k
)  =  ( # `  { x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) ) )
25 fveq2 5856 . . . . . 6  |-  ( w  =  A  ->  ( # `
 w )  =  ( # `  A
) )
2625oveq1d 6296 . . . . 5  |-  ( w  =  A  ->  (
( # `  w )  _C  k )  =  ( ( # `  A
)  _C  k ) )
27 pweq 4000 . . . . . . 7  |-  ( w  =  A  ->  ~P w  =  ~P A
)
28 rabeq 3089 . . . . . . 7  |-  ( ~P w  =  ~P A  ->  { x  e.  ~P w  |  ( # `  x
)  =  k }  =  { x  e. 
~P A  |  (
# `  x )  =  k } )
2927, 28syl 16 . . . . . 6  |-  ( w  =  A  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P A  |  ( # `  x
)  =  k } )
3029fveq2d 5860 . . . . 5  |-  ( w  =  A  ->  ( # `
 { x  e. 
~P w  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } ) )
3126, 30eqeq12d 2465 . . . 4  |-  ( w  =  A  ->  (
( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  A )  _C  k
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  k } ) ) )
3231ralbidv 2882 . . 3  |-  ( w  =  A  ->  ( A. k  e.  ZZ  ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } ) ) )
33 hash0 12416 . . . . . . . . . 10  |-  ( # `  (/) )  =  0
3433a1i 11 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 (/) )  =  0 )
35 elfz1eq 11706 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
3634, 35oveq12d 6299 . . . . . . . 8  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  ( 0  _C  0 ) )
37 0nn0 10816 . . . . . . . . 9  |-  0  e.  NN0
38 bcn0 12367 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
3937, 38ax-mp 5 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
4036, 39syl6eq 2500 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  1 )
41 pw0 4162 . . . . . . . . . 10  |-  ~P (/)  =  { (/)
}
4235eqcomd 2451 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... 0 )  ->  0  =  k )
4341raleqi 3044 . . . . . . . . . . . . 13  |-  ( A. x  e.  ~P  (/) ( # `  x )  =  k  <->  A. x  e.  { (/) }  ( # `  x
)  =  k )
44 0ex 4567 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
45 fveq2 5856 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
4645, 33syl6eq 2500 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  ( # `  x )  =  0 )
4746eqeq1d 2445 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( (
# `  x )  =  k  <->  0  =  k ) )
4844, 47ralsn 4053 . . . . . . . . . . . . 13  |-  ( A. x  e.  { (/) }  ( # `
 x )  =  k  <->  0  =  k )
4943, 48bitri 249 . . . . . . . . . . . 12  |-  ( A. x  e.  ~P  (/) ( # `  x )  =  k  <->  0  =  k )
5042, 49sylibr 212 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... 0 )  ->  A. x  e.  ~P  (/) ( # `  x
)  =  k )
51 rabid2 3021 . . . . . . . . . . 11  |-  ( ~P (/)  =  { x  e. 
~P (/)  |  ( # `  x )  =  k }  <->  A. x  e.  ~P  (/) ( # `  x
)  =  k )
5250, 51sylibr 212 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... 0 )  ->  ~P (/)  =  { x  e. 
~P (/)  |  ( # `  x )  =  k } )
5341, 52syl5reqr 2499 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  { x  e.  ~P (/)  |  ( # `
 x )  =  k }  =  { (/)
} )
5453fveq2d 5860 . . . . . . . 8  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 { x  e. 
~P (/)  |  ( # `  x )  =  k } )  =  (
# `  { (/) } ) )
55 hashsng 12417 . . . . . . . . 9  |-  ( (/)  e.  _V  ->  ( # `  { (/)
} )  =  1 )
5644, 55ax-mp 5 . . . . . . . 8  |-  ( # `  { (/) } )  =  1
5754, 56syl6eq 2500 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 { x  e. 
~P (/)  |  ( # `  x )  =  k } )  =  1 )
5840, 57eqtr4d 2487 . . . . . 6  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
5958adantl 466 . . . . 5  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
6033oveq1i 6291 . . . . . 6  |-  ( (
# `  (/) )  _C  k )  =  ( 0  _C  k )
61 bcval3 12363 . . . . . . . 8  |-  ( ( 0  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
6237, 61mp3an1 1312 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
63 id 22 . . . . . . . . . . . . . 14  |-  ( 0  =  k  ->  0  =  k )
64 0z 10881 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
65 elfz3 11705 . . . . . . . . . . . . . . 15  |-  ( 0  e.  ZZ  ->  0  e.  ( 0 ... 0
) )
6664, 65ax-mp 5 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 ... 0
)
6763, 66syl6eqelr 2540 . . . . . . . . . . . . 13  |-  ( 0  =  k  ->  k  e.  ( 0 ... 0
) )
6867con3i 135 . . . . . . . . . . . 12  |-  ( -.  k  e.  ( 0 ... 0 )  ->  -.  0  =  k
)
6968adantl 466 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  -.  0  =  k )
7041raleqi 3044 . . . . . . . . . . . 12  |-  ( A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k  <->  A. x  e.  { (/)
}  -.  ( # `  x )  =  k )
7147notbid 294 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( -.  ( # `  x
)  =  k  <->  -.  0  =  k ) )
7244, 71ralsn 4053 . . . . . . . . . . . 12  |-  ( A. x  e.  { (/) }  -.  ( # `  x )  =  k  <->  -.  0  =  k )
7370, 72bitri 249 . . . . . . . . . . 11  |-  ( A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k  <->  -.  0  =  k )
7469, 73sylibr 212 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  A. x  e.  ~P  (/) 
-.  ( # `  x
)  =  k )
75 rabeq0 3793 . . . . . . . . . 10  |-  ( { x  e.  ~P (/)  |  (
# `  x )  =  k }  =  (/)  <->  A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k )
7674, 75sylibr 212 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  { x  e. 
~P (/)  |  ( # `  x )  =  k }  =  (/) )
7776fveq2d 5860 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( # `  {
x  e.  ~P (/)  |  (
# `  x )  =  k } )  =  ( # `  (/) ) )
7877, 33syl6eq 2500 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( # `  {
x  e.  ~P (/)  |  (
# `  x )  =  k } )  =  0 )
7962, 78eqtr4d 2487 . . . . . 6  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
8060, 79syl5eq 2496 . . . . 5  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
8159, 80pm2.61dan 791 . . . 4  |-  ( k  e.  ZZ  ->  (
( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
8281rgen 2803 . . 3  |-  A. k  e.  ZZ  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
83 oveq2 6289 . . . . . 6  |-  ( k  =  j  ->  (
( # `  y )  _C  k )  =  ( ( # `  y
)  _C  j ) )
84 eqeq2 2458 . . . . . . . . 9  |-  ( k  =  j  ->  (
( # `  x )  =  k  <->  ( # `  x
)  =  j ) )
8584rabbidv 3087 . . . . . . . 8  |-  ( k  =  j  ->  { x  e.  ~P y  |  (
# `  x )  =  k }  =  { x  e.  ~P y  |  ( # `  x
)  =  j } )
86 fveq2 5856 . . . . . . . . . 10  |-  ( x  =  z  ->  ( # `
 x )  =  ( # `  z
) )
8786eqeq1d 2445 . . . . . . . . 9  |-  ( x  =  z  ->  (
( # `  x )  =  j  <->  ( # `  z
)  =  j ) )
8887cbvrabv 3094 . . . . . . . 8  |-  { x  e.  ~P y  |  (
# `  x )  =  j }  =  { z  e.  ~P y  |  ( # `  z
)  =  j }
8985, 88syl6eq 2500 . . . . . . 7  |-  ( k  =  j  ->  { x  e.  ~P y  |  (
# `  x )  =  k }  =  { z  e.  ~P y  |  ( # `  z
)  =  j } )
9089fveq2d 5860 . . . . . 6  |-  ( k  =  j  ->  ( # `
 { x  e. 
~P y  |  (
# `  x )  =  k } )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9183, 90eqeq12d 2465 . . . . 5  |-  ( k  =  j  ->  (
( ( # `  y
)  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  <->  ( ( # `  y )  _C  j
)  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )
9291cbvralv 3070 . . . 4  |-  ( A. k  e.  ZZ  (
( # `  y )  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  <->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
93 simpll 753 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
y  e.  Fin )
94 simplr 755 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  -.  z  e.  y
)
95 simprr 757 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9688fveq2i 5859 . . . . . . . . . 10  |-  ( # `  { x  e.  ~P y  |  ( # `  x
)  =  j } )  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } )
9796eqeq2i 2461 . . . . . . . . 9  |-  ( ( ( # `  y
)  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } )  <->  ( ( # `  y )  _C  j
)  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9897ralbii 2874 . . . . . . . 8  |-  ( A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } )  <->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9995, 98sylibr 212 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } ) )
100 simprl 756 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
k  e.  ZZ )
10193, 94, 99, 100hashbclem 12480 . . . . . 6  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) )
102101expr 615 . . . . 5  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  k  e.  ZZ )  ->  ( A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } )  ->  ( ( # `
 ( y  u. 
{ z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
103102ralrimdva 2861 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } )  ->  A. k  e.  ZZ  ( ( # `  ( y  u.  {
z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
10492, 103syl5bi 217 . . 3  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. k  e.  ZZ  (
( # `  y )  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  ->  A. k  e.  ZZ  ( ( # `  ( y  u.  {
z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
1058, 16, 24, 32, 82, 104findcard2s 7763 . 2  |-  ( A  e.  Fin  ->  A. k  e.  ZZ  ( ( # `  A )  _C  k
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  k } ) )
106 oveq2 6289 . . . 4  |-  ( k  =  K  ->  (
( # `  A )  _C  k )  =  ( ( # `  A
)  _C  K ) )
107 eqeq2 2458 . . . . . 6  |-  ( k  =  K  ->  (
( # `  x )  =  k  <->  ( # `  x
)  =  K ) )
108107rabbidv 3087 . . . . 5  |-  ( k  =  K  ->  { x  e.  ~P A  |  (
# `  x )  =  k }  =  { x  e.  ~P A  |  ( # `  x
)  =  K }
)
109108fveq2d 5860 . . . 4  |-  ( k  =  K  ->  ( # `
 { x  e. 
~P A  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
110106, 109eqeq12d 2465 . . 3  |-  ( k  =  K  ->  (
( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } )  <->  ( ( # `  A )  _C  K
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  K }
) ) )
111110rspccva 3195 . 2  |-  ( ( A. k  e.  ZZ  ( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } )  /\  K  e.  ZZ )  ->  (
( # `  A )  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
112105, 111sylan 471 1  |-  ( ( A  e.  Fin  /\  K  e.  ZZ )  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   {crab 2797   _Vcvv 3095    u. cun 3459   (/)c0 3770   ~Pcpw 3997   {csn 4014   ` cfv 5578  (class class class)co 6281   Fincfn 7518   0cc0 9495   1c1 9496   NN0cn0 10801   ZZcz 10870   ...cfz 11681    _C cbc 12359   #chash 12384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-n0 10802  df-z 10871  df-uz 11091  df-rp 11230  df-fz 11682  df-seq 12087  df-fac 12333  df-bc 12360  df-hash 12385
This theorem is referenced by:  hashbc2  14401  sylow1lem1  16492  musum  23339  ballotlem1  28298  ballotlem2  28300
  Copyright terms: Public domain W3C validator