MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc Structured version   Visualization version   Unicode version

Theorem hashbc 12657
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashbc  |-  ( ( A  e.  Fin  /\  K  e.  ZZ )  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
Distinct variable groups:    x, A    x, K

Proof of Theorem hashbc
Dummy variables  j 
k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5879 . . . . . 6  |-  ( w  =  (/)  ->  ( # `  w )  =  (
# `  (/) ) )
21oveq1d 6323 . . . . 5  |-  ( w  =  (/)  ->  ( (
# `  w )  _C  k )  =  ( ( # `  (/) )  _C  k ) )
3 pweq 3945 . . . . . . 7  |-  ( w  =  (/)  ->  ~P w  =  ~P (/) )
4 rabeq 3024 . . . . . . 7  |-  ( ~P w  =  ~P (/)  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
53, 4syl 17 . . . . . 6  |-  ( w  =  (/)  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
65fveq2d 5883 . . . . 5  |-  ( w  =  (/)  ->  ( # `  { x  e.  ~P w  |  ( # `  x
)  =  k } )  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
72, 6eqeq12d 2486 . . . 4  |-  ( w  =  (/)  ->  ( ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) ) )
87ralbidv 2829 . . 3  |-  ( w  =  (/)  ->  ( A. k  e.  ZZ  (
( # `  w )  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) ) )
9 fveq2 5879 . . . . . 6  |-  ( w  =  y  ->  ( # `
 w )  =  ( # `  y
) )
109oveq1d 6323 . . . . 5  |-  ( w  =  y  ->  (
( # `  w )  _C  k )  =  ( ( # `  y
)  _C  k ) )
11 pweq 3945 . . . . . . 7  |-  ( w  =  y  ->  ~P w  =  ~P y
)
12 rabeq 3024 . . . . . . 7  |-  ( ~P w  =  ~P y  ->  { x  e.  ~P w  |  ( # `  x
)  =  k }  =  { x  e. 
~P y  |  (
# `  x )  =  k } )
1311, 12syl 17 . . . . . 6  |-  ( w  =  y  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P y  |  ( # `  x
)  =  k } )
1413fveq2d 5883 . . . . 5  |-  ( w  =  y  ->  ( # `
 { x  e. 
~P w  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } ) )
1510, 14eqeq12d 2486 . . . 4  |-  ( w  =  y  ->  (
( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  y )  _C  k
)  =  ( # `  { x  e.  ~P y  |  ( # `  x
)  =  k } ) ) )
1615ralbidv 2829 . . 3  |-  ( w  =  y  ->  ( A. k  e.  ZZ  ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  y
)  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } ) ) )
17 fveq2 5879 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( # `  w
)  =  ( # `  ( y  u.  {
z } ) ) )
1817oveq1d 6323 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( # `  w )  _C  k
)  =  ( (
# `  ( y  u.  { z } ) )  _C  k ) )
19 pweq 3945 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ~P w  =  ~P ( y  u. 
{ z } ) )
20 rabeq 3024 . . . . . . 7  |-  ( ~P w  =  ~P (
y  u.  { z } )  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } )
2119, 20syl 17 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  { x  e. 
~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } )
2221fveq2d 5883 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  =  ( # `  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } ) )
2318, 22eqeq12d 2486 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( (
# `  w )  _C  k )  =  (
# `  { x  e.  ~P w  |  (
# `  x )  =  k } )  <-> 
( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) ) )
2423ralbidv 2829 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A. k  e.  ZZ  ( ( # `  w )  _C  k
)  =  ( # `  { x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) ) )
25 fveq2 5879 . . . . . 6  |-  ( w  =  A  ->  ( # `
 w )  =  ( # `  A
) )
2625oveq1d 6323 . . . . 5  |-  ( w  =  A  ->  (
( # `  w )  _C  k )  =  ( ( # `  A
)  _C  k ) )
27 pweq 3945 . . . . . . 7  |-  ( w  =  A  ->  ~P w  =  ~P A
)
28 rabeq 3024 . . . . . . 7  |-  ( ~P w  =  ~P A  ->  { x  e.  ~P w  |  ( # `  x
)  =  k }  =  { x  e. 
~P A  |  (
# `  x )  =  k } )
2927, 28syl 17 . . . . . 6  |-  ( w  =  A  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P A  |  ( # `  x
)  =  k } )
3029fveq2d 5883 . . . . 5  |-  ( w  =  A  ->  ( # `
 { x  e. 
~P w  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } ) )
3126, 30eqeq12d 2486 . . . 4  |-  ( w  =  A  ->  (
( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  A )  _C  k
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  k } ) ) )
3231ralbidv 2829 . . 3  |-  ( w  =  A  ->  ( A. k  e.  ZZ  ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } ) ) )
33 hash0 12586 . . . . . . . . . 10  |-  ( # `  (/) )  =  0
3433a1i 11 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 (/) )  =  0 )
35 elfz1eq 11836 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
3634, 35oveq12d 6326 . . . . . . . 8  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  ( 0  _C  0 ) )
37 0nn0 10908 . . . . . . . . 9  |-  0  e.  NN0
38 bcn0 12533 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
3937, 38ax-mp 5 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
4036, 39syl6eq 2521 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  1 )
41 pw0 4110 . . . . . . . . . 10  |-  ~P (/)  =  { (/)
}
4235eqcomd 2477 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... 0 )  ->  0  =  k )
4341raleqi 2977 . . . . . . . . . . . . 13  |-  ( A. x  e.  ~P  (/) ( # `  x )  =  k  <->  A. x  e.  { (/) }  ( # `  x
)  =  k )
44 0ex 4528 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
45 fveq2 5879 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
4645, 33syl6eq 2521 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  ( # `  x )  =  0 )
4746eqeq1d 2473 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( (
# `  x )  =  k  <->  0  =  k ) )
4844, 47ralsn 4001 . . . . . . . . . . . . 13  |-  ( A. x  e.  { (/) }  ( # `
 x )  =  k  <->  0  =  k )
4943, 48bitri 257 . . . . . . . . . . . 12  |-  ( A. x  e.  ~P  (/) ( # `  x )  =  k  <->  0  =  k )
5042, 49sylibr 217 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... 0 )  ->  A. x  e.  ~P  (/) ( # `  x
)  =  k )
51 rabid2 2954 . . . . . . . . . . 11  |-  ( ~P (/)  =  { x  e. 
~P (/)  |  ( # `  x )  =  k }  <->  A. x  e.  ~P  (/) ( # `  x
)  =  k )
5250, 51sylibr 217 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... 0 )  ->  ~P (/)  =  { x  e. 
~P (/)  |  ( # `  x )  =  k } )
5341, 52syl5reqr 2520 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  { x  e.  ~P (/)  |  ( # `
 x )  =  k }  =  { (/)
} )
5453fveq2d 5883 . . . . . . . 8  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 { x  e. 
~P (/)  |  ( # `  x )  =  k } )  =  (
# `  { (/) } ) )
55 hashsng 12587 . . . . . . . . 9  |-  ( (/)  e.  _V  ->  ( # `  { (/)
} )  =  1 )
5644, 55ax-mp 5 . . . . . . . 8  |-  ( # `  { (/) } )  =  1
5754, 56syl6eq 2521 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 { x  e. 
~P (/)  |  ( # `  x )  =  k } )  =  1 )
5840, 57eqtr4d 2508 . . . . . 6  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
5958adantl 473 . . . . 5  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
6033oveq1i 6318 . . . . . 6  |-  ( (
# `  (/) )  _C  k )  =  ( 0  _C  k )
61 bcval3 12529 . . . . . . . 8  |-  ( ( 0  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
6237, 61mp3an1 1377 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
63 id 22 . . . . . . . . . . . . . 14  |-  ( 0  =  k  ->  0  =  k )
64 0z 10972 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
65 elfz3 11835 . . . . . . . . . . . . . . 15  |-  ( 0  e.  ZZ  ->  0  e.  ( 0 ... 0
) )
6664, 65ax-mp 5 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 ... 0
)
6763, 66syl6eqelr 2558 . . . . . . . . . . . . 13  |-  ( 0  =  k  ->  k  e.  ( 0 ... 0
) )
6867con3i 142 . . . . . . . . . . . 12  |-  ( -.  k  e.  ( 0 ... 0 )  ->  -.  0  =  k
)
6968adantl 473 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  -.  0  =  k )
7041raleqi 2977 . . . . . . . . . . . 12  |-  ( A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k  <->  A. x  e.  { (/)
}  -.  ( # `  x )  =  k )
7147notbid 301 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( -.  ( # `  x
)  =  k  <->  -.  0  =  k ) )
7244, 71ralsn 4001 . . . . . . . . . . . 12  |-  ( A. x  e.  { (/) }  -.  ( # `  x )  =  k  <->  -.  0  =  k )
7370, 72bitri 257 . . . . . . . . . . 11  |-  ( A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k  <->  -.  0  =  k )
7469, 73sylibr 217 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  A. x  e.  ~P  (/) 
-.  ( # `  x
)  =  k )
75 rabeq0 3757 . . . . . . . . . 10  |-  ( { x  e.  ~P (/)  |  (
# `  x )  =  k }  =  (/)  <->  A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k )
7674, 75sylibr 217 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  { x  e. 
~P (/)  |  ( # `  x )  =  k }  =  (/) )
7776fveq2d 5883 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( # `  {
x  e.  ~P (/)  |  (
# `  x )  =  k } )  =  ( # `  (/) ) )
7877, 33syl6eq 2521 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( # `  {
x  e.  ~P (/)  |  (
# `  x )  =  k } )  =  0 )
7962, 78eqtr4d 2508 . . . . . 6  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
8060, 79syl5eq 2517 . . . . 5  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
8159, 80pm2.61dan 808 . . . 4  |-  ( k  e.  ZZ  ->  (
( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
8281rgen 2766 . . 3  |-  A. k  e.  ZZ  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
83 oveq2 6316 . . . . . 6  |-  ( k  =  j  ->  (
( # `  y )  _C  k )  =  ( ( # `  y
)  _C  j ) )
84 eqeq2 2482 . . . . . . . . 9  |-  ( k  =  j  ->  (
( # `  x )  =  k  <->  ( # `  x
)  =  j ) )
8584rabbidv 3022 . . . . . . . 8  |-  ( k  =  j  ->  { x  e.  ~P y  |  (
# `  x )  =  k }  =  { x  e.  ~P y  |  ( # `  x
)  =  j } )
86 fveq2 5879 . . . . . . . . . 10  |-  ( x  =  z  ->  ( # `
 x )  =  ( # `  z
) )
8786eqeq1d 2473 . . . . . . . . 9  |-  ( x  =  z  ->  (
( # `  x )  =  j  <->  ( # `  z
)  =  j ) )
8887cbvrabv 3030 . . . . . . . 8  |-  { x  e.  ~P y  |  (
# `  x )  =  j }  =  { z  e.  ~P y  |  ( # `  z
)  =  j }
8985, 88syl6eq 2521 . . . . . . 7  |-  ( k  =  j  ->  { x  e.  ~P y  |  (
# `  x )  =  k }  =  { z  e.  ~P y  |  ( # `  z
)  =  j } )
9089fveq2d 5883 . . . . . 6  |-  ( k  =  j  ->  ( # `
 { x  e. 
~P y  |  (
# `  x )  =  k } )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9183, 90eqeq12d 2486 . . . . 5  |-  ( k  =  j  ->  (
( ( # `  y
)  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  <->  ( ( # `  y )  _C  j
)  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )
9291cbvralv 3005 . . . 4  |-  ( A. k  e.  ZZ  (
( # `  y )  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  <->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
93 simpll 768 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
y  e.  Fin )
94 simplr 770 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  -.  z  e.  y
)
95 simprr 774 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9688fveq2i 5882 . . . . . . . . . 10  |-  ( # `  { x  e.  ~P y  |  ( # `  x
)  =  j } )  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } )
9796eqeq2i 2483 . . . . . . . . 9  |-  ( ( ( # `  y
)  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } )  <->  ( ( # `  y )  _C  j
)  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9897ralbii 2823 . . . . . . . 8  |-  ( A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } )  <->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9995, 98sylibr 217 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } ) )
100 simprl 772 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
k  e.  ZZ )
10193, 94, 99, 100hashbclem 12656 . . . . . 6  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) )
102101expr 626 . . . . 5  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  k  e.  ZZ )  ->  ( A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } )  ->  ( ( # `
 ( y  u. 
{ z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
103102ralrimdva 2812 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } )  ->  A. k  e.  ZZ  ( ( # `  ( y  u.  {
z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
10492, 103syl5bi 225 . . 3  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. k  e.  ZZ  (
( # `  y )  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  ->  A. k  e.  ZZ  ( ( # `  ( y  u.  {
z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
1058, 16, 24, 32, 82, 104findcard2s 7830 . 2  |-  ( A  e.  Fin  ->  A. k  e.  ZZ  ( ( # `  A )  _C  k
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  k } ) )
106 oveq2 6316 . . . 4  |-  ( k  =  K  ->  (
( # `  A )  _C  k )  =  ( ( # `  A
)  _C  K ) )
107 eqeq2 2482 . . . . . 6  |-  ( k  =  K  ->  (
( # `  x )  =  k  <->  ( # `  x
)  =  K ) )
108107rabbidv 3022 . . . . 5  |-  ( k  =  K  ->  { x  e.  ~P A  |  (
# `  x )  =  k }  =  { x  e.  ~P A  |  ( # `  x
)  =  K }
)
109108fveq2d 5883 . . . 4  |-  ( k  =  K  ->  ( # `
 { x  e. 
~P A  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
110106, 109eqeq12d 2486 . . 3  |-  ( k  =  K  ->  (
( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } )  <->  ( ( # `  A )  _C  K
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  K }
) ) )
111110rspccva 3135 . 2  |-  ( ( A. k  e.  ZZ  ( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } )  /\  K  e.  ZZ )  ->  (
( # `  A )  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
112105, 111sylan 479 1  |-  ( ( A  e.  Fin  /\  K  e.  ZZ )  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031    u. cun 3388   (/)c0 3722   ~Pcpw 3942   {csn 3959   ` cfv 5589  (class class class)co 6308   Fincfn 7587   0cc0 9557   1c1 9558   NN0cn0 10893   ZZcz 10961   ...cfz 11810    _C cbc 12525   #chash 12553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-seq 12252  df-fac 12498  df-bc 12526  df-hash 12554
This theorem is referenced by:  hashbc2  15037  sylow1lem1  17328  musum  24199  ballotlem1  29392  ballotlem2  29394
  Copyright terms: Public domain W3C validator