MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harwdom Structured version   Unicode version

Theorem harwdom 7805
Description: The Hartogs function is weakly dominated by  ~P ( X  X.  X ). This follows from a more precise analysis of the bound used in hartogs 7758 to prove that  (har `  X ) is a set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harwdom  |-  ( X  e.  V  ->  (har `  X )  ~<_*  ~P ( X  X.  X ) )

Proof of Theorem harwdom
Dummy variables  y 
r  f  s  t  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . . 6  |-  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  =  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
2 eqid 2443 . . . . . 6  |-  { <. s ,  t >.  |  E. w  e.  y  E. z  e.  y  (
( s  =  ( f `  w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
31, 2hartogslem1 7756 . . . . 5  |-  ( dom 
{ <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  C_  ~P ( X  X.  X )  /\  Fun  { <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  /\  ( X  e.  V  ->  ran  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  { x  e.  On  |  x  ~<_  X } ) )
43simp2i 998 . . . 4  |-  Fun  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
53simp1i 997 . . . . 5  |-  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  C_  ~P ( X  X.  X )
6 xpexg 6507 . . . . . . 7  |-  ( ( X  e.  V  /\  X  e.  V )  ->  ( X  X.  X
)  e.  _V )
76anidms 645 . . . . . 6  |-  ( X  e.  V  ->  ( X  X.  X )  e. 
_V )
8 pwexg 4476 . . . . . 6  |-  ( ( X  X.  X )  e.  _V  ->  ~P ( X  X.  X
)  e.  _V )
97, 8syl 16 . . . . 5  |-  ( X  e.  V  ->  ~P ( X  X.  X
)  e.  _V )
10 ssexg 4438 . . . . 5  |-  ( ( dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  C_  ~P ( X  X.  X )  /\  ~P ( X  X.  X
)  e.  _V )  ->  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  e.  _V )
115, 9, 10sylancr 663 . . . 4  |-  ( X  e.  V  ->  dom  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  e.  _V )
12 funex 5945 . . . 4  |-  ( ( Fun  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  /\  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  e.  _V )  ->  { <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  e.  _V )
134, 11, 12sylancr 663 . . 3  |-  ( X  e.  V  ->  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  e.  _V )
14 funfn 5447 . . . . . 6  |-  ( Fun 
{ <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  <->  { <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  Fn  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) } )
154, 14mpbi 208 . . . . 5  |-  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  Fn  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
1615a1i 11 . . . 4  |-  ( X  e.  V  ->  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  Fn  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) } )
173simp3i 999 . . . . 5  |-  ( X  e.  V  ->  ran  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  { x  e.  On  |  x  ~<_  X } )
18 harval 7777 . . . . 5  |-  ( X  e.  V  ->  (har `  X )  =  {
x  e.  On  |  x  ~<_  X } )
1917, 18eqtr4d 2478 . . . 4  |-  ( X  e.  V  ->  ran  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  (har `  X ) )
20 df-fo 5424 . . . 4  |-  ( {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) } : dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) } -onto-> (har `  X )  <->  ( { <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  Fn  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  /\  ran  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  (har `  X ) ) )
2116, 19, 20sylanbrc 664 . . 3  |-  ( X  e.  V  ->  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) } : dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) } -onto-> (har `  X )
)
22 fowdom 7786 . . 3  |-  ( ( { <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  e.  _V  /\  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) } : dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) } -onto-> (har `  X )
)  ->  (har `  X
)  ~<_*  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) } )
2313, 21, 22syl2anc 661 . 2  |-  ( X  e.  V  ->  (har `  X )  ~<_*  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) } )
24 ssdomg 7355 . . . 4  |-  ( ~P ( X  X.  X
)  e.  _V  ->  ( dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  C_  ~P ( X  X.  X )  ->  dom  { <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  ~<_  ~P ( X  X.  X ) ) )
259, 5, 24mpisyl 18 . . 3  |-  ( X  e.  V  ->  dom  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  ~<_  ~P ( X  X.  X ) )
26 domwdom 7789 . . 3  |-  ( dom 
{ <. r ,  y
>.  |  ( (
( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  ~<_  ~P ( X  X.  X )  ->  dom  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  ~<_*  ~P ( X  X.  X ) )
2725, 26syl 16 . 2  |-  ( X  e.  V  ->  dom  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  ~<_*  ~P ( X  X.  X ) )
28 wdomtr 7790 . 2  |-  ( ( (har `  X )  ~<_*  dom  {
<. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  /\  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  X  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  ~<_*  ~P ( X  X.  X ) )  -> 
(har `  X )  ~<_*  ~P ( X  X.  X
) )
2923, 27, 28syl2anc 661 1  |-  ( X  e.  V  ->  (har `  X )  ~<_*  ~P ( X  X.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2716   {crab 2719   _Vcvv 2972    \ cdif 3325    C_ wss 3328   ~Pcpw 3860   class class class wbr 4292   {copab 4349    _E cep 4630    _I cid 4631    We wwe 4678   Oncon0 4719    X. cxp 4838   dom cdm 4840   ran crn 4841    |` cres 4842   Fun wfun 5412    Fn wfn 5413   -onto->wfo 5416   ` cfv 5418    ~<_ cdom 7308  OrdIsocoi 7723  harchar 7771    ~<_* cwdom 7772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-recs 6832  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-oi 7724  df-har 7773  df-wdom 7774
This theorem is referenced by:  gchhar  8846
  Copyright terms: Public domain W3C validator