MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harsdom Structured version   Unicode version

Theorem harsdom 8379
Description: The Hartogs number of a well-orderable set strictly dominates the set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harsdom  |-  ( A  e.  dom  card  ->  A 
~<  (har `  A )
)

Proof of Theorem harsdom
StepHypRef Expression
1 harndom 7993 . 2  |-  -.  (har `  A )  ~<_  A
2 harcl 7990 . . . 4  |-  (har `  A )  e.  On
3 onenon 8333 . . . 4  |-  ( (har
`  A )  e.  On  ->  (har `  A
)  e.  dom  card )
42, 3ax-mp 5 . . 3  |-  (har `  A )  e.  dom  card
5 domtri2 8373 . . . 4  |-  ( ( (har `  A )  e.  dom  card  /\  A  e. 
dom  card )  ->  (
(har `  A )  ~<_  A 
<->  -.  A  ~<  (har `  A ) ) )
65con2bid 329 . . 3  |-  ( ( (har `  A )  e.  dom  card  /\  A  e. 
dom  card )  ->  ( A  ~<  (har `  A
)  <->  -.  (har `  A
)  ~<_  A ) )
74, 6mpan 670 . 2  |-  ( A  e.  dom  card  ->  ( A  ~<  (har `  A
)  <->  -.  (har `  A
)  ~<_  A ) )
81, 7mpbiri 233 1  |-  ( A  e.  dom  card  ->  A 
~<  (har `  A )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1804   class class class wbr 4437   Oncon0 4868   dom cdm 4989   ` cfv 5578    ~<_ cdom 7516    ~< csdm 7517  harchar 7985   cardccrd 8319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-recs 7044  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-oi 7938  df-har 7987  df-card 8323
This theorem is referenced by:  onsdom  8380  harval2  8381  alephordilem1  8457  gchaleph2  9053
  Copyright terms: Public domain W3C validator