MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicubnd Structured version   Unicode version

Theorem harmonicubnd 22290
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
harmonicubnd  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  <_  ( ( log `  A )  +  1 ) )
Distinct variable group:    A, m

Proof of Theorem harmonicubnd
StepHypRef Expression
1 fzfid 11781 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1 ... ( |_ `  A ) )  e.  Fin )
2 elfznn 11467 . . . . 5  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
32adantl 463 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  m  e.  (
1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
43nnrecred 10357 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  m  e.  (
1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  RR )
51, 4fsumrecl 13197 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  e.  RR )
6 flge1nn 11653 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  A
)  e.  NN )
76nnrpd 11016 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  A
)  e.  RR+ )
87relogcld 21959 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  ( |_ `  A ) )  e.  RR )
9 peano2re 9532 . . 3  |-  ( ( log `  ( |_
`  A ) )  e.  RR  ->  (
( log `  ( |_ `  A ) )  +  1 )  e.  RR )
108, 9syl 16 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( log `  ( |_ `  A ) )  +  1 )  e.  RR )
11 simpl 454 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR )
12 0red 9377 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  e.  RR )
13 1re 9375 . . . . . . 7  |-  1  e.  RR
1413a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  e.  RR )
15 0lt1 9852 . . . . . . 7  |-  0  <  1
1615a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  1 )
17 simpr 458 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  <_  A )
1812, 14, 11, 16, 17ltletrd 9521 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  A )
1911, 18elrpd 11015 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR+ )
2019relogcld 21959 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  A
)  e.  RR )
21 peano2re 9532 . . 3  |-  ( ( log `  A )  e.  RR  ->  (
( log `  A
)  +  1 )  e.  RR )
2220, 21syl 16 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( log `  A
)  +  1 )  e.  RR )
23 harmonicbnd 22284 . . . . 5  |-  ( ( |_ `  A )  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  ( |_ `  A ) ) )  e.  ( gamma [,] 1 ) )
246, 23syl 16 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( |_ `  A
) ) )  e.  ( gamma [,] 1 ) )
25 emre 22286 . . . . . 6  |-  gamma  e.  RR
2625, 13elicc2i 11351 . . . . 5  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  ( |_ `  A ) ) )  e.  ( gamma [,] 1 )  <->  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  ( |_ `  A ) ) )  e.  RR  /\  gamma  <_  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( |_ `  A
) ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( |_ `  A
) ) )  <_ 
1 ) )
2726simp3bi 1000 . . . 4  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  ( |_ `  A ) ) )  e.  ( gamma [,] 1 )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  ( |_ `  A ) ) )  <_  1 )
2824, 27syl 16 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( |_ `  A
) ) )  <_ 
1 )
295, 8, 14lesubadd2d 9928 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  ( |_ `  A
) ) )  <_ 
1  <->  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  <_  ( ( log `  ( |_ `  A ) )  +  1 ) ) )
3028, 29mpbid 210 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  <_  ( ( log `  ( |_ `  A
) )  +  1 ) )
31 flle 11635 . . . . 5  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
3231adantr 462 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  A
)  <_  A )
337, 19logled 21963 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( |_ `  A )  <_  A  <->  ( log `  ( |_
`  A ) )  <_  ( log `  A
) ) )
3432, 33mpbid 210 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  ( |_ `  A ) )  <_  ( log `  A
) )
358, 20, 14, 34leadd1dd 9943 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( log `  ( |_ `  A ) )  +  1 )  <_ 
( ( log `  A
)  +  1 ) )
365, 10, 22, 30, 35letrd 9518 1  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  <_  ( ( log `  A )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1757   class class class wbr 4282   ` cfv 5408  (class class class)co 6082   RRcr 9271   0cc0 9272   1c1 9273    + caddc 9275    < clt 9408    <_ cle 9409    - cmin 9585    / cdiv 9983   NNcn 10312   [,]cicc 11293   ...cfz 11426   |_cfl 11626   sum_csu 13149   logclog 21893   gammacem 22272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350  ax-addf 9351  ax-mulf 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-om 6468  df-1st 6568  df-2nd 6569  df-supp 6682  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-er 7091  df-map 7206  df-pm 7207  df-ixp 7254  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fsupp 7611  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-cda 8327  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-4 10372  df-5 10373  df-6 10374  df-7 10375  df-8 10376  df-9 10377  df-10 10378  df-n0 10570  df-z 10637  df-dec 10746  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-ioo 11294  df-ioc 11295  df-ico 11296  df-icc 11297  df-fz 11427  df-fzo 11535  df-fl 11628  df-mod 11695  df-seq 11793  df-exp 11852  df-fac 12038  df-bc 12065  df-hash 12090  df-shft 12542  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-limsup 12935  df-clim 12952  df-rlim 12953  df-sum 13150  df-ef 13338  df-sin 13340  df-cos 13341  df-pi 13343  df-struct 14161  df-ndx 14162  df-slot 14163  df-base 14164  df-sets 14165  df-ress 14166  df-plusg 14236  df-mulr 14237  df-starv 14238  df-sca 14239  df-vsca 14240  df-ip 14241  df-tset 14242  df-ple 14243  df-ds 14245  df-unif 14246  df-hom 14247  df-cco 14248  df-rest 14346  df-topn 14347  df-0g 14365  df-gsum 14366  df-topgen 14367  df-pt 14368  df-prds 14371  df-xrs 14425  df-qtop 14430  df-imas 14431  df-xps 14433  df-mre 14509  df-mrc 14510  df-acs 14512  df-mnd 15400  df-submnd 15450  df-mulg 15530  df-cntz 15817  df-cmn 16261  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-fbas 17660  df-fg 17661  df-cnfld 17665  df-top 18347  df-bases 18349  df-topon 18350  df-topsp 18351  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-lp 18584  df-perf 18585  df-cn 18675  df-cnp 18676  df-haus 18763  df-tx 18979  df-hmeo 19172  df-fil 19263  df-fm 19355  df-flim 19356  df-flf 19357  df-xms 19739  df-ms 19740  df-tms 19741  df-cncf 20298  df-limc 21185  df-dv 21186  df-log 21895  df-em 22273
This theorem is referenced by:  fsumharmonic  22292  logfaclbnd  22448  vmalogdivsum2  22674  logdivbnd  22692  pntrsumo1  22701  pntrlog2bndlem2  22714  pntrlog2bndlem5  22717  pntrlog2bndlem6  22719
  Copyright terms: Public domain W3C validator