MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Unicode version

Theorem harmonicbnd4 22384
Description: The asymptotic behavior of  sum_ m  <_  A ,  1  /  m  =  log A  +  gamma  +  O ( 1  /  A ). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Distinct variable group:    A, m

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 11787 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1 ... ( |_ `  A ) )  e. 
Fin )
2 elfznn 11470 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
32adantl 466 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
43nnrecred 10359 . . . . . 6  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  RR )
51, 4fsumrecl 13203 . . . . 5  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  RR )
65recnd 9404 . . . 4  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  CC )
7 relogcl 22007 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
87recnd 9404 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
9 emre 22379 . . . . . 6  |-  gamma  e.  RR
109a1i 11 . . . . 5  |-  ( A  e.  RR+  ->  gamma  e.  RR )
1110recnd 9404 . . . 4  |-  ( A  e.  RR+  ->  gamma  e.  CC )
126, 8, 11subsub4d 9742 . . 3  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )
1312fveq2d 5690 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )
14 rpreccl 11006 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
1514rpred 11019 . . . . 5  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
16 resubcl 9665 . . . . 5  |-  ( (
gamma  e.  RR  /\  (
1  /  A )  e.  RR )  -> 
( gamma  -  ( 1  /  A ) )  e.  RR )
179, 15, 16sylancr 663 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  e.  RR )
18 rprege0 10997 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
19 flge0nn0 11658 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2018, 19syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
21 nn0p1nn 10611 . . . . . . . 8  |-  ( ( |_ `  A )  e.  NN0  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2220, 21syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2322nnrpd 11018 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR+ )
24 relogcl 22007 . . . . . 6  |-  ( ( ( |_ `  A
)  +  1 )  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
2523, 24syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
265, 25resubcld 9768 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
275, 7resubcld 9768 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  e.  RR )
2822nnrecred 10359 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  RR )
29 fzfid 11787 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( 1 ... ( ( |_
`  A )  +  1 ) )  e. 
Fin )
30 elfznn 11470 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) )  ->  m  e.  NN )
3130adantl 466 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  m  e.  NN )
3231nnrecred 10359 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  RR )
3329, 32fsumrecl 13203 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  RR )
3433, 25resubcld 9768 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
35 harmonicbnd 22377 . . . . . . . 8  |-  ( ( ( |_ `  A
)  +  1 )  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 ) )
3622, 35syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( gamma [,] 1 ) )
37 1re 9377 . . . . . . . . 9  |-  1  e.  RR
389, 37elicc2i 11353 . . . . . . . 8  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  <->  ( ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  RR  /\ 
gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  <_  1 ) )
3938simp2bi 1004 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  ->  gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
4036, 39syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  gamma  <_  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) ) )
41 rpre 10989 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
42 fllep1 11643 . . . . . . . 8  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
4341, 42syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  A  <_ 
( ( |_ `  A )  +  1 ) )
44 rpregt0 10996 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
4522nnred 10329 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR )
4622nngt0d 10357 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  < 
( ( |_ `  A )  +  1 ) )
47 lerec 10206 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( ( |_ `  A )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  A )  +  1 ) ) )  -> 
( A  <_  (
( |_ `  A
)  +  1 )  <-> 
( 1  /  (
( |_ `  A
)  +  1 ) )  <_  ( 1  /  A ) ) )
4844, 45, 46, 47syl12anc 1216 . . . . . . 7  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) ) )
4943, 48mpbid 210 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) )
5010, 28, 34, 15, 40, 49le2subd 9950 . . . . 5  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
5133recnd 9404 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  CC )
5225recnd 9404 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  CC )
5328recnd 9404 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  CC )
5451, 52, 53sub32d 9743 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
55 nnuz 10888 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
5622, 55syl6eleq 2528 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  ( ZZ>= `  1 )
)
5732recnd 9404 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  CC )
58 oveq2 6094 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  A )  +  1 )  ->  (
1  /  m )  =  ( 1  / 
( ( |_ `  A )  +  1 ) ) )
5956, 57, 58fsumm1 13212 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6020nn0cnd 10630 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  CC )
61 ax-1cn 9332 . . . . . . . . . . . . . 14  |-  1  e.  CC
62 pncan 9608 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  A )  +  1 )  -  1 )  =  ( |_
`  A ) )
6360, 61, 62sylancl 662 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  -  1 )  =  ( |_ `  A
) )
6463oveq2d 6102 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) )  =  ( 1 ... ( |_ `  A ) ) )
6564sumeq1d 13170 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( ( |_ `  A )  +  1 )  -  1 ) ) ( 1  /  m )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
6665oveq1d 6101 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( ( |_
`  A )  +  1 )  -  1 ) ) ( 1  /  m )  +  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6759, 66eqtrd 2470 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6867oveq1d 6101 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  +  ( 1  /  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
696, 53pncand 9712 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7068, 69eqtrd 2470 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7170oveq1d 6101 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7254, 71eqtrd 2470 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7350, 72breqtrd 4311 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
74 logleb 22032 . . . . . . 7  |-  ( ( A  e.  RR+  /\  (
( |_ `  A
)  +  1 )  e.  RR+ )  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7523, 74mpdan 668 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7643, 75mpbid 210 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) )
777, 25, 5, 76lesub2dd 9948 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) ) )
7817, 26, 27, 73, 77letrd 9520 . . 3  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) ) )
7927, 15resubcld 9768 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  e.  RR )
8015recnd 9404 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  CC )
816, 8, 80subsub4d 9742 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) ) )
827, 15readdcld 9405 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  A )  +  ( 1  /  A ) )  e.  RR )
83 id 22 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR+ )
8423, 83relogdivd 22055 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  =  ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) ) )
85 rerpdivcl 11010 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR  /\  A  e.  RR+ )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  e.  RR )
8645, 85mpancom 669 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR )
8737a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  1  e.  RR )
8887, 15readdcld 9405 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  e.  RR )
8915reefcld 13365 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR )
9061a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  1  e.  CC )
91 rpcnne0 11000 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
92 divdir 10009 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  =  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) ) )
9360, 90, 91, 92syl3anc 1218 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  =  ( ( ( |_
`  A )  /  A )  +  ( 1  /  A ) ) )
94 reflcl 11638 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
9541, 94syl 16 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
96 rerpdivcl 11010 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  A
)  e.  RR  /\  A  e.  RR+ )  -> 
( ( |_ `  A )  /  A
)  e.  RR )
9795, 96mpancom 669 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  e.  RR )
98 flle 11641 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
9941, 98syl 16 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_  A )
100 rpcn 10991 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR+  ->  A  e.  CC )
101100mulid1d 9395 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( A  x.  1 )  =  A )
10299, 101breqtrrd 4313 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_ 
( A  x.  1 ) )
103 ledivmul 10197 . . . . . . . . . . . . . . . 16  |-  ( ( ( |_ `  A
)  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( ( |_
`  A )  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
10495, 87, 44, 103syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
105102, 104mpbird 232 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  <_ 
1 )
10697, 87, 15, 105leadd1dd 9945 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) )  <_ 
( 1  +  ( 1  /  A ) ) )
10793, 106eqbrtrd 4307 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( 1  +  ( 1  /  A ) ) )
108 efgt1p 13391 . . . . . . . . . . . . . 14  |-  ( ( 1  /  A )  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
10914, 108syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
11088, 89, 109ltled 9514 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  <_ 
( exp `  (
1  /  A ) ) )
11186, 88, 89, 107, 110letrd 9520 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( exp `  (
1  /  A ) ) )
112 rpdivcl 11005 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR+  /\  A  e.  RR+ )  ->  (
( ( |_ `  A )  +  1 )  /  A )  e.  RR+ )
11323, 112mpancom 669 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR+ )
11415rpefcld 13381 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR+ )
115113, 114logled 22056 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( ( |_ `  A )  +  1 )  /  A )  <_  ( exp `  (
1  /  A ) )  <->  ( log `  (
( ( |_ `  A )  +  1 )  /  A ) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) ) )
116111, 115mpbid 210 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) )
11715relogefd 22057 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( exp `  (
1  /  A ) ) )  =  ( 1  /  A ) )
118116, 117breqtrd 4311 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  (
1  /  A ) )
11984, 118eqbrtrrd 4309 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( log `  ( ( |_ `  A )  +  1 ) )  -  ( log `  A
) )  <_  (
1  /  A ) )
12025, 7, 15lesubadd2d 9930 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) )  <_ 
( 1  /  A
)  <->  ( log `  (
( |_ `  A
)  +  1 ) )  <_  ( ( log `  A )  +  ( 1  /  A
) ) ) )
121119, 120mpbid 210 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  <_  (
( log `  A
)  +  ( 1  /  A ) ) )
12225, 82, 5, 121lesub2dd 9948 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
12381, 122eqbrtrd 4307 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
124 harmonicbnd3 22381 . . . . . . 7  |-  ( ( |_ `  A )  e.  NN0  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
12520, 124syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
126 0re 9378 . . . . . . . 8  |-  0  e.  RR
127126, 9elicc2i 11353 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  <->  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR  /\  0  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma ) )
128127simp3bi 1005 . . . . . 6  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
129125, 128syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
13079, 26, 10, 123, 129letrd 9520 . . . 4  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  gamma )
13127, 15, 10lesubaddd 9928 . . . 4  |-  ( A  e.  RR+  ->  ( ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  ( 1  /  A
) )  <_  gamma  <->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) ) )
132130, 131mpbid 210 . . 3  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) )
13327, 10, 15absdifled 12913 . . 3  |-  ( A  e.  RR+  ->  ( ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma ) )  <_  ( 1  /  A )  <->  ( ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  <_ 
( gamma  +  ( 1  /  A ) ) ) ) )
13478, 132, 133mpbir2and 913 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  <_  (
1  /  A ) )
13513, 134eqbrtrrd 4309 1  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   NN0cn0 10571   ZZ>=cuz 10853   RR+crp 10983   [,]cicc 11295   ...cfz 11429   |_cfl 11632   abscabs 12715   sum_csu 13155   expce 13339   logclog 21986   gammacem 22365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-e 13346  df-sin 13347  df-cos 13348  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322  df-log 21988  df-em 22366
This theorem is referenced by:  mulogsumlem  22760  mulog2sumlem1  22763
  Copyright terms: Public domain W3C validator