MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Unicode version

Theorem harmonicbnd4 22520
Description: The asymptotic behavior of  sum_ m  <_  A ,  1  /  m  =  log A  +  gamma  +  O ( 1  /  A ). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Distinct variable group:    A, m

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 11896 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1 ... ( |_ `  A ) )  e. 
Fin )
2 elfznn 11579 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
32adantl 466 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
43nnrecred 10468 . . . . . 6  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  RR )
51, 4fsumrecl 13313 . . . . 5  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  RR )
65recnd 9513 . . . 4  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  CC )
7 relogcl 22143 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
87recnd 9513 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
9 emre 22515 . . . . . 6  |-  gamma  e.  RR
109a1i 11 . . . . 5  |-  ( A  e.  RR+  ->  gamma  e.  RR )
1110recnd 9513 . . . 4  |-  ( A  e.  RR+  ->  gamma  e.  CC )
126, 8, 11subsub4d 9851 . . 3  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )
1312fveq2d 5793 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )
14 rpreccl 11115 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
1514rpred 11128 . . . . 5  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
16 resubcl 9774 . . . . 5  |-  ( (
gamma  e.  RR  /\  (
1  /  A )  e.  RR )  -> 
( gamma  -  ( 1  /  A ) )  e.  RR )
179, 15, 16sylancr 663 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  e.  RR )
18 rprege0 11106 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
19 flge0nn0 11767 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2018, 19syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
21 nn0p1nn 10720 . . . . . . . 8  |-  ( ( |_ `  A )  e.  NN0  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2220, 21syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2322nnrpd 11127 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR+ )
24 relogcl 22143 . . . . . 6  |-  ( ( ( |_ `  A
)  +  1 )  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
2523, 24syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
265, 25resubcld 9877 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
275, 7resubcld 9877 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  e.  RR )
2822nnrecred 10468 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  RR )
29 fzfid 11896 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( 1 ... ( ( |_
`  A )  +  1 ) )  e. 
Fin )
30 elfznn 11579 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) )  ->  m  e.  NN )
3130adantl 466 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  m  e.  NN )
3231nnrecred 10468 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  RR )
3329, 32fsumrecl 13313 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  RR )
3433, 25resubcld 9877 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
35 harmonicbnd 22513 . . . . . . . 8  |-  ( ( ( |_ `  A
)  +  1 )  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 ) )
3622, 35syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( gamma [,] 1 ) )
37 1re 9486 . . . . . . . . 9  |-  1  e.  RR
389, 37elicc2i 11462 . . . . . . . 8  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  <->  ( ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  RR  /\ 
gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  <_  1 ) )
3938simp2bi 1004 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  ->  gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
4036, 39syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  gamma  <_  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) ) )
41 rpre 11098 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
42 fllep1 11752 . . . . . . . 8  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
4341, 42syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  A  <_ 
( ( |_ `  A )  +  1 ) )
44 rpregt0 11105 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
4522nnred 10438 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR )
4622nngt0d 10466 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  < 
( ( |_ `  A )  +  1 ) )
47 lerec 10315 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( ( |_ `  A )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  A )  +  1 ) ) )  -> 
( A  <_  (
( |_ `  A
)  +  1 )  <-> 
( 1  /  (
( |_ `  A
)  +  1 ) )  <_  ( 1  /  A ) ) )
4844, 45, 46, 47syl12anc 1217 . . . . . . 7  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) ) )
4943, 48mpbid 210 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) )
5010, 28, 34, 15, 40, 49le2subd 10059 . . . . 5  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
5133recnd 9513 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  CC )
5225recnd 9513 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  CC )
5328recnd 9513 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  CC )
5451, 52, 53sub32d 9852 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
55 nnuz 10997 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
5622, 55syl6eleq 2549 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  ( ZZ>= `  1 )
)
5732recnd 9513 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  CC )
58 oveq2 6198 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  A )  +  1 )  ->  (
1  /  m )  =  ( 1  / 
( ( |_ `  A )  +  1 ) ) )
5956, 57, 58fsumm1 13322 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6020nn0cnd 10739 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  CC )
61 ax-1cn 9441 . . . . . . . . . . . . . 14  |-  1  e.  CC
62 pncan 9717 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  A )  +  1 )  -  1 )  =  ( |_
`  A ) )
6360, 61, 62sylancl 662 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  -  1 )  =  ( |_ `  A
) )
6463oveq2d 6206 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) )  =  ( 1 ... ( |_ `  A ) ) )
6564sumeq1d 13280 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( ( |_ `  A )  +  1 )  -  1 ) ) ( 1  /  m )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
6665oveq1d 6205 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( ( |_
`  A )  +  1 )  -  1 ) ) ( 1  /  m )  +  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6759, 66eqtrd 2492 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6867oveq1d 6205 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  +  ( 1  /  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
696, 53pncand 9821 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7068, 69eqtrd 2492 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7170oveq1d 6205 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7254, 71eqtrd 2492 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7350, 72breqtrd 4414 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
74 logleb 22168 . . . . . . 7  |-  ( ( A  e.  RR+  /\  (
( |_ `  A
)  +  1 )  e.  RR+ )  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7523, 74mpdan 668 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7643, 75mpbid 210 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) )
777, 25, 5, 76lesub2dd 10057 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) ) )
7817, 26, 27, 73, 77letrd 9629 . . 3  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) ) )
7927, 15resubcld 9877 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  e.  RR )
8015recnd 9513 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  CC )
816, 8, 80subsub4d 9851 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) ) )
827, 15readdcld 9514 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  A )  +  ( 1  /  A ) )  e.  RR )
83 id 22 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR+ )
8423, 83relogdivd 22191 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  =  ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) ) )
85 rerpdivcl 11119 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR  /\  A  e.  RR+ )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  e.  RR )
8645, 85mpancom 669 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR )
8737a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  1  e.  RR )
8887, 15readdcld 9514 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  e.  RR )
8915reefcld 13475 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR )
9061a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  1  e.  CC )
91 rpcnne0 11109 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
92 divdir 10118 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  =  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) ) )
9360, 90, 91, 92syl3anc 1219 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  =  ( ( ( |_
`  A )  /  A )  +  ( 1  /  A ) ) )
94 reflcl 11747 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
9541, 94syl 16 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
96 rerpdivcl 11119 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  A
)  e.  RR  /\  A  e.  RR+ )  -> 
( ( |_ `  A )  /  A
)  e.  RR )
9795, 96mpancom 669 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  e.  RR )
98 flle 11750 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
9941, 98syl 16 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_  A )
100 rpcn 11100 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR+  ->  A  e.  CC )
101100mulid1d 9504 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( A  x.  1 )  =  A )
10299, 101breqtrrd 4416 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_ 
( A  x.  1 ) )
103 ledivmul 10306 . . . . . . . . . . . . . . . 16  |-  ( ( ( |_ `  A
)  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( ( |_
`  A )  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
10495, 87, 44, 103syl3anc 1219 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
105102, 104mpbird 232 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  <_ 
1 )
10697, 87, 15, 105leadd1dd 10054 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) )  <_ 
( 1  +  ( 1  /  A ) ) )
10793, 106eqbrtrd 4410 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( 1  +  ( 1  /  A ) ) )
108 efgt1p 13501 . . . . . . . . . . . . . 14  |-  ( ( 1  /  A )  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
10914, 108syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
11088, 89, 109ltled 9623 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  <_ 
( exp `  (
1  /  A ) ) )
11186, 88, 89, 107, 110letrd 9629 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( exp `  (
1  /  A ) ) )
112 rpdivcl 11114 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR+  /\  A  e.  RR+ )  ->  (
( ( |_ `  A )  +  1 )  /  A )  e.  RR+ )
11323, 112mpancom 669 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR+ )
11415rpefcld 13491 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR+ )
115113, 114logled 22192 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( ( |_ `  A )  +  1 )  /  A )  <_  ( exp `  (
1  /  A ) )  <->  ( log `  (
( ( |_ `  A )  +  1 )  /  A ) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) ) )
116111, 115mpbid 210 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) )
11715relogefd 22193 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( exp `  (
1  /  A ) ) )  =  ( 1  /  A ) )
118116, 117breqtrd 4414 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  (
1  /  A ) )
11984, 118eqbrtrrd 4412 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( log `  ( ( |_ `  A )  +  1 ) )  -  ( log `  A
) )  <_  (
1  /  A ) )
12025, 7, 15lesubadd2d 10039 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) )  <_ 
( 1  /  A
)  <->  ( log `  (
( |_ `  A
)  +  1 ) )  <_  ( ( log `  A )  +  ( 1  /  A
) ) ) )
121119, 120mpbid 210 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  <_  (
( log `  A
)  +  ( 1  /  A ) ) )
12225, 82, 5, 121lesub2dd 10057 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
12381, 122eqbrtrd 4410 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
124 harmonicbnd3 22517 . . . . . . 7  |-  ( ( |_ `  A )  e.  NN0  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
12520, 124syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
126 0re 9487 . . . . . . . 8  |-  0  e.  RR
127126, 9elicc2i 11462 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  <->  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR  /\  0  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma ) )
128127simp3bi 1005 . . . . . 6  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
129125, 128syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
13079, 26, 10, 123, 129letrd 9629 . . . 4  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  gamma )
13127, 15, 10lesubaddd 10037 . . . 4  |-  ( A  e.  RR+  ->  ( ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  ( 1  /  A
) )  <_  gamma  <->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) ) )
132130, 131mpbid 210 . . 3  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) )
13327, 10, 15absdifled 13023 . . 3  |-  ( A  e.  RR+  ->  ( ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma ) )  <_  ( 1  /  A )  <->  ( ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  <_ 
( gamma  +  ( 1  /  A ) ) ) ) )
13478, 132, 133mpbir2and 913 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  <_  (
1  /  A ) )
13513, 134eqbrtrrd 4412 1  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   class class class wbr 4390   ` cfv 5516  (class class class)co 6190   CCcc 9381   RRcr 9382   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388    < clt 9519    <_ cle 9520    - cmin 9696    / cdiv 10094   NNcn 10423   NN0cn0 10680   ZZ>=cuz 10962   RR+crp 11092   [,]cicc 11404   ...cfz 11538   |_cfl 11741   abscabs 12825   sum_csu 13265   expce 13449   logclog 22122   gammacem 22501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461  ax-addf 9462  ax-mulf 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-of 6420  df-om 6577  df-1st 6677  df-2nd 6678  df-supp 6791  df-recs 6932  df-rdg 6966  df-1o 7020  df-2o 7021  df-oadd 7024  df-er 7201  df-map 7316  df-pm 7317  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-fsupp 7722  df-fi 7762  df-sup 7792  df-oi 7825  df-card 8210  df-cda 8438  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-7 10486  df-8 10487  df-9 10488  df-10 10489  df-n0 10681  df-z 10748  df-dec 10857  df-uz 10963  df-q 11055  df-rp 11093  df-xneg 11190  df-xadd 11191  df-xmul 11192  df-ioo 11405  df-ioc 11406  df-ico 11407  df-icc 11408  df-fz 11539  df-fzo 11650  df-fl 11743  df-mod 11810  df-seq 11908  df-exp 11967  df-fac 12153  df-bc 12180  df-hash 12205  df-shft 12658  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-limsup 13051  df-clim 13068  df-rlim 13069  df-sum 13266  df-ef 13455  df-e 13456  df-sin 13457  df-cos 13458  df-pi 13460  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-ress 14283  df-plusg 14353  df-mulr 14354  df-starv 14355  df-sca 14356  df-vsca 14357  df-ip 14358  df-tset 14359  df-ple 14360  df-ds 14362  df-unif 14363  df-hom 14364  df-cco 14365  df-rest 14463  df-topn 14464  df-0g 14482  df-gsum 14483  df-topgen 14484  df-pt 14485  df-prds 14488  df-xrs 14542  df-qtop 14547  df-imas 14548  df-xps 14550  df-mre 14626  df-mrc 14627  df-acs 14629  df-mnd 15517  df-submnd 15567  df-mulg 15650  df-cntz 15937  df-cmn 16383  df-psmet 17918  df-xmet 17919  df-met 17920  df-bl 17921  df-mopn 17922  df-fbas 17923  df-fg 17924  df-cnfld 17928  df-top 18619  df-bases 18621  df-topon 18622  df-topsp 18623  df-cld 18739  df-ntr 18740  df-cls 18741  df-nei 18818  df-lp 18856  df-perf 18857  df-cn 18947  df-cnp 18948  df-haus 19035  df-tx 19251  df-hmeo 19444  df-fil 19535  df-fm 19627  df-flim 19628  df-flf 19629  df-xms 20011  df-ms 20012  df-tms 20013  df-cncf 20570  df-limc 21457  df-dv 21458  df-log 22124  df-em 22502
This theorem is referenced by:  mulogsumlem  22896  mulog2sumlem1  22899
  Copyright terms: Public domain W3C validator