MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Unicode version

Theorem harmonicbnd4 23666
Description: The asymptotic behavior of  sum_ m  <_  A ,  1  /  m  =  log A  +  gamma  +  O ( 1  /  A ). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Distinct variable group:    A, m

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 12124 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1 ... ( |_ `  A ) )  e. 
Fin )
2 elfznn 11768 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
32adantl 464 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
43nnrecred 10622 . . . . . 6  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  RR )
51, 4fsumrecl 13705 . . . . 5  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  RR )
65recnd 9652 . . . 4  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  CC )
7 relogcl 23255 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
87recnd 9652 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
9 emre 23661 . . . . . 6  |-  gamma  e.  RR
109a1i 11 . . . . 5  |-  ( A  e.  RR+  ->  gamma  e.  RR )
1110recnd 9652 . . . 4  |-  ( A  e.  RR+  ->  gamma  e.  CC )
126, 8, 11subsub4d 9998 . . 3  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )
1312fveq2d 5853 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )
14 rpreccl 11289 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
1514rpred 11304 . . . . 5  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
16 resubcl 9919 . . . . 5  |-  ( (
gamma  e.  RR  /\  (
1  /  A )  e.  RR )  -> 
( gamma  -  ( 1  /  A ) )  e.  RR )
179, 15, 16sylancr 661 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  e.  RR )
18 rprege0 11279 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
19 flge0nn0 11992 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2018, 19syl 17 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
21 nn0p1nn 10876 . . . . . . . 8  |-  ( ( |_ `  A )  e.  NN0  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2220, 21syl 17 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2322nnrpd 11302 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR+ )
24 relogcl 23255 . . . . . 6  |-  ( ( ( |_ `  A
)  +  1 )  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
2523, 24syl 17 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
265, 25resubcld 10028 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
275, 7resubcld 10028 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  e.  RR )
2822nnrecred 10622 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  RR )
29 fzfid 12124 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( 1 ... ( ( |_
`  A )  +  1 ) )  e. 
Fin )
30 elfznn 11768 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) )  ->  m  e.  NN )
3130adantl 464 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  m  e.  NN )
3231nnrecred 10622 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  RR )
3329, 32fsumrecl 13705 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  RR )
3433, 25resubcld 10028 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
35 harmonicbnd 23659 . . . . . . . 8  |-  ( ( ( |_ `  A
)  +  1 )  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 ) )
3622, 35syl 17 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( gamma [,] 1 ) )
37 1re 9625 . . . . . . . . 9  |-  1  e.  RR
389, 37elicc2i 11644 . . . . . . . 8  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  <->  ( ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  RR  /\ 
gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  <_  1 ) )
3938simp2bi 1013 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  ->  gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
4036, 39syl 17 . . . . . 6  |-  ( A  e.  RR+  ->  gamma  <_  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) ) )
41 rpre 11271 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
42 fllep1 11975 . . . . . . . 8  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
4341, 42syl 17 . . . . . . 7  |-  ( A  e.  RR+  ->  A  <_ 
( ( |_ `  A )  +  1 ) )
44 rpregt0 11278 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
4522nnred 10591 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR )
4622nngt0d 10620 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  < 
( ( |_ `  A )  +  1 ) )
47 lerec 10467 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( ( |_ `  A )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  A )  +  1 ) ) )  -> 
( A  <_  (
( |_ `  A
)  +  1 )  <-> 
( 1  /  (
( |_ `  A
)  +  1 ) )  <_  ( 1  /  A ) ) )
4844, 45, 46, 47syl12anc 1228 . . . . . . 7  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) ) )
4943, 48mpbid 210 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) )
5010, 28, 34, 15, 40, 49le2subd 10211 . . . . 5  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
5133recnd 9652 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  CC )
5225recnd 9652 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  CC )
5328recnd 9652 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  CC )
5451, 52, 53sub32d 9999 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
55 nnuz 11162 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
5622, 55syl6eleq 2500 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  ( ZZ>= `  1 )
)
5732recnd 9652 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  CC )
58 oveq2 6286 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  A )  +  1 )  ->  (
1  /  m )  =  ( 1  / 
( ( |_ `  A )  +  1 ) ) )
5956, 57, 58fsumm1 13717 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6020nn0cnd 10895 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  CC )
61 ax-1cn 9580 . . . . . . . . . . . . . 14  |-  1  e.  CC
62 pncan 9862 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  A )  +  1 )  -  1 )  =  ( |_
`  A ) )
6360, 61, 62sylancl 660 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  -  1 )  =  ( |_ `  A
) )
6463oveq2d 6294 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) )  =  ( 1 ... ( |_ `  A ) ) )
6564sumeq1d 13672 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( ( |_ `  A )  +  1 )  -  1 ) ) ( 1  /  m )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
6665oveq1d 6293 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( ( |_
`  A )  +  1 )  -  1 ) ) ( 1  /  m )  +  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6759, 66eqtrd 2443 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6867oveq1d 6293 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  +  ( 1  /  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
696, 53pncand 9968 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7068, 69eqtrd 2443 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7170oveq1d 6293 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7254, 71eqtrd 2443 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7350, 72breqtrd 4419 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
74 logleb 23282 . . . . . . 7  |-  ( ( A  e.  RR+  /\  (
( |_ `  A
)  +  1 )  e.  RR+ )  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7523, 74mpdan 666 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7643, 75mpbid 210 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) )
777, 25, 5, 76lesub2dd 10209 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) ) )
7817, 26, 27, 73, 77letrd 9773 . . 3  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) ) )
7927, 15resubcld 10028 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  e.  RR )
8015recnd 9652 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  CC )
816, 8, 80subsub4d 9998 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) ) )
827, 15readdcld 9653 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  A )  +  ( 1  /  A ) )  e.  RR )
83 id 22 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR+ )
8423, 83relogdivd 23305 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  =  ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) ) )
85 rerpdivcl 11293 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR  /\  A  e.  RR+ )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  e.  RR )
8645, 85mpancom 667 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR )
8737a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  1  e.  RR )
8887, 15readdcld 9653 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  e.  RR )
8915reefcld 14032 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR )
9061a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  1  e.  CC )
91 rpcnne0 11282 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
92 divdir 10271 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  =  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) ) )
9360, 90, 91, 92syl3anc 1230 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  =  ( ( ( |_
`  A )  /  A )  +  ( 1  /  A ) ) )
94 reflcl 11970 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
9541, 94syl 17 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
96 rerpdivcl 11293 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  A
)  e.  RR  /\  A  e.  RR+ )  -> 
( ( |_ `  A )  /  A
)  e.  RR )
9795, 96mpancom 667 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  e.  RR )
98 flle 11973 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
9941, 98syl 17 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_  A )
100 rpcn 11273 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR+  ->  A  e.  CC )
101100mulid1d 9643 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( A  x.  1 )  =  A )
10299, 101breqtrrd 4421 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_ 
( A  x.  1 ) )
103 ledivmul 10459 . . . . . . . . . . . . . . . 16  |-  ( ( ( |_ `  A
)  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( ( |_
`  A )  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
10495, 87, 44, 103syl3anc 1230 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
105102, 104mpbird 232 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  <_ 
1 )
10697, 87, 15, 105leadd1dd 10206 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) )  <_ 
( 1  +  ( 1  /  A ) ) )
10793, 106eqbrtrd 4415 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( 1  +  ( 1  /  A ) ) )
108 efgt1p 14059 . . . . . . . . . . . . . 14  |-  ( ( 1  /  A )  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
10914, 108syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
11088, 89, 109ltled 9765 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  <_ 
( exp `  (
1  /  A ) ) )
11186, 88, 89, 107, 110letrd 9773 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( exp `  (
1  /  A ) ) )
112 rpdivcl 11288 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR+  /\  A  e.  RR+ )  ->  (
( ( |_ `  A )  +  1 )  /  A )  e.  RR+ )
11323, 112mpancom 667 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR+ )
11415rpefcld 14049 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR+ )
115113, 114logled 23306 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( ( |_ `  A )  +  1 )  /  A )  <_  ( exp `  (
1  /  A ) )  <->  ( log `  (
( ( |_ `  A )  +  1 )  /  A ) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) ) )
116111, 115mpbid 210 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) )
11715relogefd 23307 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( exp `  (
1  /  A ) ) )  =  ( 1  /  A ) )
118116, 117breqtrd 4419 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  (
1  /  A ) )
11984, 118eqbrtrrd 4417 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( log `  ( ( |_ `  A )  +  1 ) )  -  ( log `  A
) )  <_  (
1  /  A ) )
12025, 7, 15lesubadd2d 10191 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) )  <_ 
( 1  /  A
)  <->  ( log `  (
( |_ `  A
)  +  1 ) )  <_  ( ( log `  A )  +  ( 1  /  A
) ) ) )
121119, 120mpbid 210 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  <_  (
( log `  A
)  +  ( 1  /  A ) ) )
12225, 82, 5, 121lesub2dd 10209 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
12381, 122eqbrtrd 4415 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
124 harmonicbnd3 23663 . . . . . . 7  |-  ( ( |_ `  A )  e.  NN0  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
12520, 124syl 17 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
126 0re 9626 . . . . . . . 8  |-  0  e.  RR
127126, 9elicc2i 11644 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  <->  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR  /\  0  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma ) )
128127simp3bi 1014 . . . . . 6  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
129125, 128syl 17 . . . . 5  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
13079, 26, 10, 123, 129letrd 9773 . . . 4  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  gamma )
13127, 15, 10lesubaddd 10189 . . . 4  |-  ( A  e.  RR+  ->  ( ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  ( 1  /  A
) )  <_  gamma  <->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) ) )
132130, 131mpbid 210 . . 3  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) )
13327, 10, 15absdifled 13415 . . 3  |-  ( A  e.  RR+  ->  ( ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma ) )  <_  ( 1  /  A )  <->  ( ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  <_ 
( gamma  +  ( 1  /  A ) ) ) ) )
13478, 132, 133mpbir2and 923 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  <_  (
1  /  A ) )
13513, 134eqbrtrrd 4417 1  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527    < clt 9658    <_ cle 9659    - cmin 9841    / cdiv 10247   NNcn 10576   NN0cn0 10836   ZZ>=cuz 11127   RR+crp 11265   [,]cicc 11585   ...cfz 11726   |_cfl 11964   abscabs 13216   sum_csu 13657   expce 14006   logclog 23234   gammacem 23647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ioc 11587  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-fac 12398  df-bc 12425  df-hash 12453  df-shft 13049  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-limsup 13443  df-clim 13460  df-rlim 13461  df-sum 13658  df-ef 14012  df-e 14013  df-sin 14014  df-cos 14015  df-pi 14017  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-mulg 16384  df-cntz 16679  df-cmn 17124  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-lp 19930  df-perf 19931  df-cn 20021  df-cnp 20022  df-haus 20109  df-tx 20355  df-hmeo 20548  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-xms 21115  df-ms 21116  df-tms 21117  df-cncf 21674  df-limc 22562  df-dv 22563  df-log 23236  df-em 23648
This theorem is referenced by:  mulogsumlem  24097  mulog2sumlem1  24100
  Copyright terms: Public domain W3C validator