MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfaddsub Structured version   Unicode version

Theorem halfaddsub 10784
Description: Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
halfaddsub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B )  /  2 )  +  ( ( A  -  B )  /  2
) )  =  A  /\  ( ( ( A  +  B )  /  2 )  -  ( ( A  -  B )  /  2
) )  =  B ) )

Proof of Theorem halfaddsub
StepHypRef Expression
1 ppncan 9873 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( A  +  B
)  +  ( A  -  B ) )  =  ( A  +  A ) )
213anidm13 1286 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  -  B ) )  =  ( A  +  A ) )
3 2times 10666 . . . . . 6  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
43adantr 465 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  A
)  =  ( A  +  A ) )
52, 4eqtr4d 2511 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  -  B ) )  =  ( 2  x.  A ) )
65oveq1d 6310 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  +  ( A  -  B
) )  /  2
)  =  ( ( 2  x.  A )  /  2 ) )
7 addcl 9586 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
8 subcl 9831 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
9 2cnne0 10762 . . . . 5  |-  ( 2  e.  CC  /\  2  =/=  0 )
10 divdir 10242 . . . . 5  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
( A  +  B
)  +  ( A  -  B ) )  /  2 )  =  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) )
119, 10mp3an3 1313 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC )  ->  ( ( ( A  +  B )  +  ( A  -  B ) )  / 
2 )  =  ( ( ( A  +  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )
127, 8, 11syl2anc 661 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  +  ( A  -  B
) )  /  2
)  =  ( ( ( A  +  B
)  /  2 )  +  ( ( A  -  B )  / 
2 ) ) )
13 2cn 10618 . . . . 5  |-  2  e.  CC
14 2ne0 10640 . . . . 5  |-  2  =/=  0
15 divcan3 10243 . . . . 5  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  A
)  /  2 )  =  A )
1613, 14, 15mp3an23 1316 . . . 4  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  /  2 )  =  A )
1716adantr 465 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  A )  /  2
)  =  A )
186, 12, 173eqtr3d 2516 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) )  =  A )
19 pnncan 9872 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
)  -  ( A  -  B ) )  =  ( B  +  B ) )
20193anidm23 1287 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  ( A  -  B )
)  =  ( B  +  B ) )
21 2times 10666 . . . . . 6  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
2221adantl 466 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
2320, 22eqtr4d 2511 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  ( A  -  B )
)  =  ( 2  x.  B ) )
2423oveq1d 6310 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  ( A  -  B
) )  /  2
)  =  ( ( 2  x.  B )  /  2 ) )
25 divsubdir 10252 . . . . 5  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
( A  +  B
)  -  ( A  -  B ) )  /  2 )  =  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) ) )
269, 25mp3an3 1313 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC )  ->  ( ( ( A  +  B )  -  ( A  -  B ) )  / 
2 )  =  ( ( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )
277, 8, 26syl2anc 661 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  ( A  -  B
) )  /  2
)  =  ( ( ( A  +  B
)  /  2 )  -  ( ( A  -  B )  / 
2 ) ) )
28 divcan3 10243 . . . . 5  |-  ( ( B  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  B
)  /  2 )  =  B )
2913, 14, 28mp3an23 1316 . . . 4  |-  ( B  e.  CC  ->  (
( 2  x.  B
)  /  2 )  =  B )
3029adantl 466 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  B )  /  2
)  =  B )
3124, 27, 303eqtr3d 2516 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) )  =  B )
3218, 31jca 532 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B )  /  2 )  +  ( ( A  -  B )  /  2
) )  =  A  /\  ( ( ( A  +  B )  /  2 )  -  ( ( A  -  B )  /  2
) )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662  (class class class)co 6295   CCcc 9502   0cc0 9504    + caddc 9507    x. cmul 9509    - cmin 9817    / cdiv 10218   2c2 10597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-2 10606
This theorem is referenced by:  addsin  13783  subsin  13784  addcos  13787  subcos  13788  ioo2bl  21166  dcubic  23043  fourierdlem79  31809
  Copyright terms: Public domain W3C validator