MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfaddsub Structured version   Unicode version

Theorem halfaddsub 10793
Description: Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
halfaddsub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B )  /  2 )  +  ( ( A  -  B )  /  2
) )  =  A  /\  ( ( ( A  +  B )  /  2 )  -  ( ( A  -  B )  /  2
) )  =  B ) )

Proof of Theorem halfaddsub
StepHypRef Expression
1 ppncan 9880 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( A  +  B
)  +  ( A  -  B ) )  =  ( A  +  A ) )
213anidm13 1286 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  -  B ) )  =  ( A  +  A ) )
3 2times 10675 . . . . . 6  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
43adantr 465 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  A
)  =  ( A  +  A ) )
52, 4eqtr4d 2501 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  -  B ) )  =  ( 2  x.  A ) )
65oveq1d 6311 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  +  ( A  -  B
) )  /  2
)  =  ( ( 2  x.  A )  /  2 ) )
7 addcl 9591 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
8 subcl 9838 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
9 2cnne0 10771 . . . . 5  |-  ( 2  e.  CC  /\  2  =/=  0 )
10 divdir 10251 . . . . 5  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
( A  +  B
)  +  ( A  -  B ) )  /  2 )  =  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) )
119, 10mp3an3 1313 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC )  ->  ( ( ( A  +  B )  +  ( A  -  B ) )  / 
2 )  =  ( ( ( A  +  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )
127, 8, 11syl2anc 661 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  +  ( A  -  B
) )  /  2
)  =  ( ( ( A  +  B
)  /  2 )  +  ( ( A  -  B )  / 
2 ) ) )
13 2cn 10627 . . . . 5  |-  2  e.  CC
14 2ne0 10649 . . . . 5  |-  2  =/=  0
15 divcan3 10252 . . . . 5  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  A
)  /  2 )  =  A )
1613, 14, 15mp3an23 1316 . . . 4  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  /  2 )  =  A )
1716adantr 465 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  A )  /  2
)  =  A )
186, 12, 173eqtr3d 2506 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) )  =  A )
19 pnncan 9879 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
)  -  ( A  -  B ) )  =  ( B  +  B ) )
20193anidm23 1287 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  ( A  -  B )
)  =  ( B  +  B ) )
21 2times 10675 . . . . . 6  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
2221adantl 466 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
2320, 22eqtr4d 2501 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  ( A  -  B )
)  =  ( 2  x.  B ) )
2423oveq1d 6311 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  ( A  -  B
) )  /  2
)  =  ( ( 2  x.  B )  /  2 ) )
25 divsubdir 10261 . . . . 5  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
( A  +  B
)  -  ( A  -  B ) )  /  2 )  =  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) ) )
269, 25mp3an3 1313 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  ( A  -  B
)  e.  CC )  ->  ( ( ( A  +  B )  -  ( A  -  B ) )  / 
2 )  =  ( ( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )
277, 8, 26syl2anc 661 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  ( A  -  B
) )  /  2
)  =  ( ( ( A  +  B
)  /  2 )  -  ( ( A  -  B )  / 
2 ) ) )
28 divcan3 10252 . . . . 5  |-  ( ( B  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  B
)  /  2 )  =  B )
2913, 14, 28mp3an23 1316 . . . 4  |-  ( B  e.  CC  ->  (
( 2  x.  B
)  /  2 )  =  B )
3029adantl 466 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  B )  /  2
)  =  B )
3124, 27, 303eqtr3d 2506 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) )  =  B )
3218, 31jca 532 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B )  /  2 )  +  ( ( A  -  B )  /  2
) )  =  A  /\  ( ( ( A  +  B )  /  2 )  -  ( ( A  -  B )  /  2
) )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652  (class class class)co 6296   CCcc 9507   0cc0 9509    + caddc 9512    x. cmul 9514    - cmin 9824    / cdiv 10227   2c2 10606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-2 10615
This theorem is referenced by:  addsin  13916  subsin  13917  addcos  13920  subcos  13921  ioo2bl  21423  dcubic  23302  fourierdlem79  32129
  Copyright terms: Public domain W3C validator