MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadass Structured version   Unicode version

Theorem hadass 1495
Description: Associative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadass  |-  (hadd (
ph ,  ps ,  ch )  <->  ( ph  \/_  ( ps  \/_  ch ) ) )

Proof of Theorem hadass
StepHypRef Expression
1 df-had 1492 . 2  |-  (hadd (
ph ,  ps ,  ch )  <->  ( ( ph  \/_ 
ps )  \/_  ch ) )
2 xorass 1404 . 2  |-  ( ( ( ph  \/_  ps )  \/_  ch )  <->  ( ph  \/_  ( ps  \/_  ch ) ) )
31, 2bitri 252 1  |-  (hadd (
ph ,  ps ,  ch )  <->  ( ph  \/_  ( ps  \/_  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    \/_ wxo 1400  haddwhad 1491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-xor 1401  df-had 1492
This theorem is referenced by:  hadcomb  1498
  Copyright terms: Public domain W3C validator