HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hnm Structured version   Unicode version

Theorem h2hnm 26307
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
h2h.2  |-  U  e.  NrmCVec
Assertion
Ref Expression
h2hnm  |-  normh  =  (
normCV
`  U )

Proof of Theorem h2hnm
StepHypRef Expression
1 h2h.1 . . 3  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
21fveq2i 5852 . 2  |-  ( normCV `  U )  =  (
normCV
`  <. <.  +h  ,  .h  >. ,  normh >. )
3 eqid 2402 . . 3  |-  ( normCV ` 
<. <.  +h  ,  .h  >. ,  normh >. )  =  (
normCV
`  <. <.  +h  ,  .h  >. ,  normh >. )
43nmcvfval 25914 . 2  |-  ( normCV ` 
<. <.  +h  ,  .h  >. ,  normh >. )  =  ( 2nd `  <. <.  +h  ,  .h  >. ,  normh >. )
5 opex 4655 . . 3  |-  <.  +h  ,  .h  >.  e.  _V
6 h2h.2 . . . . . 6  |-  U  e.  NrmCVec
71, 6eqeltrri 2487 . . . . 5  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
8 nvex 25918 . . . . 5  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e.  _V ) )
97, 8ax-mp 5 . . . 4  |-  (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e.  _V )
109simp3i 1008 . . 3  |-  normh  e.  _V
115, 10op2nd 6793 . 2  |-  ( 2nd `  <. <.  +h  ,  .h  >. ,  normh >. )  =  normh
122, 4, 113eqtrri 2436 1  |-  normh  =  (
normCV
`  U )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 974    = wceq 1405    e. wcel 1842   _Vcvv 3059   <.cop 3978   ` cfv 5569   2ndc2nd 6783   NrmCVeccnv 25891   normCVcnmcv 25897    +h cva 26251    .h csm 26252   normhcno 26254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-iota 5533  df-fun 5571  df-fv 5577  df-oprab 6282  df-2nd 6785  df-vc 25853  df-nv 25899  df-nmcv 25907
This theorem is referenced by:  h2hmetdval  26309  hhnm  26502
  Copyright terms: Public domain W3C validator