HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hlm Structured version   Unicode version

Theorem h2hlm 24382
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hl.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
h2hl.2  |-  U  e.  NrmCVec
h2hl.3  |-  ~H  =  ( BaseSet `  U )
h2hl.4  |-  D  =  ( IndMet `  U )
h2hl.5  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
h2hlm  |-  ~~>v  =  ( ( ~~> t `  J
)  |`  ( ~H  ^m  NN ) )

Proof of Theorem h2hlm
Dummy variables  x  f  y  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 24374 . . 3  |-  ~~>v  =  { <. f ,  x >.  |  ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) }
21relopabi 4965 . 2  |-  Rel  ~~>v
3 relres 5138 . 2  |-  Rel  (
( ~~> t `  J
)  |`  ( ~H  ^m  NN ) )
41eleq2i 2507 . . 3  |-  ( <.
f ,  x >.  e. 
~~>v  <->  <. f ,  x >.  e. 
{ <. f ,  x >.  |  ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) } )
5 opabid 4596 . . 3  |-  ( <.
f ,  x >.  e. 
{ <. f ,  x >.  |  ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) }  <->  ( (
f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
6 ancom 450 . . . . 5  |-  ( (
<. f ,  x >.  e.  ( ~~> t `  J
)  /\  f  e.  ( ~H  ^m  NN ) )  <->  ( f  e.  ( ~H  ^m  NN )  /\  <. f ,  x >.  e.  ( ~~> t `  J ) ) )
7 h2hl.3 . . . . . . . 8  |-  ~H  =  ( BaseSet `  U )
87hlex 24299 . . . . . . 7  |-  ~H  e.  _V
9 nnex 10328 . . . . . . 7  |-  NN  e.  _V
108, 9elmap 7241 . . . . . 6  |-  ( f  e.  ( ~H  ^m  NN )  <->  f : NN --> ~H )
1110anbi1i 695 . . . . 5  |-  ( ( f  e.  ( ~H 
^m  NN )  /\  <.
f ,  x >.  e.  ( ~~> t `  J
) )  <->  ( f : NN --> ~H  /\  <. f ,  x >.  e.  ( ~~> t `  J )
) )
12 df-br 4293 . . . . . . 7  |-  ( f ( ~~> t `  J
) x  <->  <. f ,  x >.  e.  ( ~~> t `  J )
)
13 h2hl.5 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
14 h2hl.2 . . . . . . . . . 10  |-  U  e.  NrmCVec
15 h2hl.4 . . . . . . . . . . 11  |-  D  =  ( IndMet `  U )
167, 15imsxmet 24083 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  D  e.  ( *Met `  ~H ) )
1714, 16mp1i 12 . . . . . . . . 9  |-  ( f : NN --> ~H  ->  D  e.  ( *Met `  ~H ) )
18 nnuz 10896 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
19 1zzd 10677 . . . . . . . . 9  |-  ( f : NN --> ~H  ->  1  e.  ZZ )
20 eqidd 2444 . . . . . . . . 9  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  =  ( f `
 k ) )
21 id 22 . . . . . . . . 9  |-  ( f : NN --> ~H  ->  f : NN --> ~H )
2213, 17, 18, 19, 20, 21lmmbrf 20773 . . . . . . . 8  |-  ( f : NN --> ~H  ->  ( f ( ~~> t `  J ) x  <->  ( x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( f `  k ) D x )  <  y ) ) )
23 eluznn 10925 . . . . . . . . . . . . . 14  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
24 ffvelrn 5841 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  e.  ~H )
25 h2hl.1 . . . . . . . . . . . . . . . . . 18  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
2625, 14, 7, 15h2hmetdval 24380 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f `  k
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( f `  k ) D x )  =  ( normh `  ( ( f `  k )  -h  x
) ) )
2724, 26sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : NN --> ~H  /\  k  e.  NN )  /\  x  e.  ~H )  ->  ( ( f `
 k ) D x )  =  (
normh `  ( ( f `
 k )  -h  x ) ) )
2827breq1d 4302 . . . . . . . . . . . . . . 15  |-  ( ( ( f : NN --> ~H  /\  k  e.  NN )  /\  x  e.  ~H )  ->  ( ( ( f `  k ) D x )  < 
y  <->  ( normh `  (
( f `  k
)  -h  x ) )  <  y ) )
2928an32s 802 . . . . . . . . . . . . . 14  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  k  e.  NN )  ->  ( ( ( f `  k ) D x )  < 
y  <->  ( normh `  (
( f `  k
)  -h  x ) )  <  y ) )
3023, 29sylan2 474 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( ( f `  k ) D x )  <  y  <->  ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
3130anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( f `  k
) D x )  <  y  <->  ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
3231ralbidva 2731 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( f `  k ) D x )  <  y  <->  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) )
3332rexbidva 2732 . . . . . . . . . 10  |-  ( ( f : NN --> ~H  /\  x  e.  ~H )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( f `  k ) D x )  <  y  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) )
3433ralbidv 2735 . . . . . . . . 9  |-  ( ( f : NN --> ~H  /\  x  e.  ~H )  ->  ( A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( f `  k ) D x )  < 
y  <->  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
3534pm5.32da 641 . . . . . . . 8  |-  ( f : NN --> ~H  ->  ( ( x  e.  ~H  /\ 
A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( f `  k ) D x )  < 
y )  <->  ( x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
3622, 35bitrd 253 . . . . . . 7  |-  ( f : NN --> ~H  ->  ( f ( ~~> t `  J ) x  <->  ( x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
3712, 36syl5bbr 259 . . . . . 6  |-  ( f : NN --> ~H  ->  (
<. f ,  x >.  e.  ( ~~> t `  J
)  <->  ( x  e. 
~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
3837pm5.32i 637 . . . . 5  |-  ( ( f : NN --> ~H  /\  <.
f ,  x >.  e.  ( ~~> t `  J
) )  <->  ( f : NN --> ~H  /\  (
x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
396, 11, 383bitrri 272 . . . 4  |-  ( ( f : NN --> ~H  /\  ( x  e.  ~H  /\ 
A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )  <->  ( <. f ,  x >.  e.  ( ~~> t `  J )  /\  f  e.  ( ~H  ^m  NN ) ) )
40 anass 649 . . . 4  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
)  <->  ( f : NN --> ~H  /\  (
x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
41 vex 2975 . . . . 5  |-  x  e. 
_V
4241opelres 5116 . . . 4  |-  ( <.
f ,  x >.  e.  ( ( ~~> t `  J )  |`  ( ~H  ^m  NN ) )  <-> 
( <. f ,  x >.  e.  ( ~~> t `  J )  /\  f  e.  ( ~H  ^m  NN ) ) )
4339, 40, 423bitr4i 277 . . 3  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
)  <->  <. f ,  x >.  e.  ( ( ~~> t `  J )  |`  ( ~H  ^m  NN ) ) )
444, 5, 433bitri 271 . 2  |-  ( <.
f ,  x >.  e. 
~~>v  <->  <. f ,  x >.  e.  ( ( ~~> t `  J )  |`  ( ~H  ^m  NN ) ) )
452, 3, 44eqrelriiv 4934 1  |-  ~~>v  =  ( ( ~~> t `  J
)  |`  ( ~H  ^m  NN ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716   <.cop 3883   class class class wbr 4292   {copab 4349    |` cres 4842   -->wf 5414   ` cfv 5418  (class class class)co 6091    ^m cmap 7214   1c1 9283    < clt 9418   NNcn 10322   ZZ>=cuz 10861   RR+crp 10991   *Metcxmt 17801   MetOpencmopn 17806   ~~> tclm 18830   NrmCVeccnv 23962   BaseSetcba 23964   IndMetcims 23969   ~Hchil 24321    +h cva 24322    .h csm 24323   normhcno 24325    -h cmv 24327    ~~>v chli 24329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-topgen 14382  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-top 18503  df-bases 18505  df-topon 18506  df-lm 18833  df-grpo 23678  df-gid 23679  df-ginv 23680  df-gdiv 23681  df-ablo 23769  df-vc 23924  df-nv 23970  df-va 23973  df-ba 23974  df-sm 23975  df-0v 23976  df-vs 23977  df-nmcv 23978  df-ims 23979  df-hvsub 24373  df-hlim 24374
This theorem is referenced by:  axhcompl-zf  24400  hlimadd  24595  hhlm  24601
  Copyright terms: Public domain W3C validator