HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hcau Structured version   Unicode version

Theorem h2hcau 25569
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hc.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
h2hc.2  |-  U  e.  NrmCVec
h2hc.3  |-  ~H  =  ( BaseSet `  U )
h2hc.4  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
h2hcau  |-  Cauchy  =  ( ( Cau `  D
)  i^i  ( ~H  ^m  NN ) )

Proof of Theorem h2hcau
Dummy variables  f 
j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2823 . 2  |-  { f  e.  ( ~H  ^m  NN )  |  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  j )  -h  ( f `  k
) ) )  < 
x }  =  {
f  |  ( f  e.  ( ~H  ^m  NN )  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  j )  -h  ( f `  k
) ) )  < 
x ) }
2 df-hcau 25563 . 2  |-  Cauchy  =  {
f  e.  ( ~H 
^m  NN )  | 
A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  j )  -h  (
f `  k )
) )  <  x }
3 elin 3687 . . . 4  |-  ( f  e.  ( ( Cau `  D )  i^i  ( ~H  ^m  NN ) )  <-> 
( f  e.  ( Cau `  D )  /\  f  e.  ( ~H  ^m  NN ) ) )
4 ancom 450 . . . 4  |-  ( ( f  e.  ( Cau `  D )  /\  f  e.  ( ~H  ^m  NN ) )  <->  ( f  e.  ( ~H  ^m  NN )  /\  f  e.  ( Cau `  D ) ) )
5 h2hc.3 . . . . . . . 8  |-  ~H  =  ( BaseSet `  U )
65hlex 25487 . . . . . . 7  |-  ~H  e.  _V
7 nnex 10538 . . . . . . 7  |-  NN  e.  _V
86, 7elmap 7444 . . . . . 6  |-  ( f  e.  ( ~H  ^m  NN )  <->  f : NN --> ~H )
9 nnuz 11113 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
10 h2hc.2 . . . . . . . . 9  |-  U  e.  NrmCVec
11 h2hc.4 . . . . . . . . . 10  |-  D  =  ( IndMet `  U )
125, 11imsxmet 25271 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  D  e.  ( *Met `  ~H ) )
1310, 12mp1i 12 . . . . . . . 8  |-  ( f : NN --> ~H  ->  D  e.  ( *Met `  ~H ) )
14 1zzd 10891 . . . . . . . 8  |-  ( f : NN --> ~H  ->  1  e.  ZZ )
15 eqidd 2468 . . . . . . . 8  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  =  ( f `
 k ) )
16 eqidd 2468 . . . . . . . 8  |-  ( ( f : NN --> ~H  /\  j  e.  NN )  ->  ( f `  j
)  =  ( f `
 j ) )
17 id 22 . . . . . . . 8  |-  ( f : NN --> ~H  ->  f : NN --> ~H )
189, 13, 14, 15, 16, 17iscauf 21451 . . . . . . 7  |-  ( f : NN --> ~H  ->  ( f  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( f `  j ) D ( f `  k ) )  <  x ) )
19 ffvelrn 6017 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ~H  /\  j  e.  NN )  ->  ( f `  j
)  e.  ~H )
2019adantr 465 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ~H  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( f `  j )  e.  ~H )
21 eluznn 11148 . . . . . . . . . . . . . 14  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
22 ffvelrn 6017 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  e.  ~H )
2321, 22sylan2 474 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ~H  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( f `  k )  e.  ~H )
2423anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ~H  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( f `  k )  e.  ~H )
25 h2hc.1 . . . . . . . . . . . . 13  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
2625, 10, 5, 11h2hmetdval 25568 . . . . . . . . . . . 12  |-  ( ( ( f `  j
)  e.  ~H  /\  ( f `  k
)  e.  ~H )  ->  ( ( f `  j ) D ( f `  k ) )  =  ( normh `  ( ( f `  j )  -h  (
f `  k )
) ) )
2720, 24, 26syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ~H  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( f `
 j ) D ( f `  k
) )  =  (
normh `  ( ( f `
 j )  -h  ( f `  k
) ) ) )
2827breq1d 4457 . . . . . . . . . 10  |-  ( ( ( f : NN --> ~H  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( f `  j ) D ( f `  k ) )  < 
x  <->  ( normh `  (
( f `  j
)  -h  ( f `
 k ) ) )  <  x ) )
2928ralbidva 2900 . . . . . . . . 9  |-  ( ( f : NN --> ~H  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( f `  j ) D ( f `  k ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  j )  -h  ( f `  k
) ) )  < 
x ) )
3029rexbidva 2970 . . . . . . . 8  |-  ( f : NN --> ~H  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( f `  j ) D ( f `  k ) )  < 
x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  j )  -h  (
f `  k )
) )  <  x
) )
3130ralbidv 2903 . . . . . . 7  |-  ( f : NN --> ~H  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( f `  j ) D ( f `  k ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  j )  -h  (
f `  k )
) )  <  x
) )
3218, 31bitrd 253 . . . . . 6  |-  ( f : NN --> ~H  ->  ( f  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  j )  -h  ( f `  k
) ) )  < 
x ) )
338, 32sylbi 195 . . . . 5  |-  ( f  e.  ( ~H  ^m  NN )  ->  ( f  e.  ( Cau `  D
)  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  j )  -h  (
f `  k )
) )  <  x
) )
3433pm5.32i 637 . . . 4  |-  ( ( f  e.  ( ~H 
^m  NN )  /\  f  e.  ( Cau `  D ) )  <->  ( f  e.  ( ~H  ^m  NN )  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  j )  -h  (
f `  k )
) )  <  x
) )
353, 4, 343bitri 271 . . 3  |-  ( f  e.  ( ( Cau `  D )  i^i  ( ~H  ^m  NN ) )  <-> 
( f  e.  ( ~H  ^m  NN )  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  j )  -h  (
f `  k )
) )  <  x
) )
3635abbi2i 2600 . 2  |-  ( ( Cau `  D )  i^i  ( ~H  ^m  NN ) )  =  {
f  |  ( f  e.  ( ~H  ^m  NN )  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  j )  -h  ( f `  k
) ) )  < 
x ) }
371, 2, 363eqtr4i 2506 1  |-  Cauchy  =  ( ( Cau `  D
)  i^i  ( ~H  ^m  NN ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   {crab 2818    i^i cin 3475   <.cop 4033   class class class wbr 4447   -->wf 5582   ` cfv 5586  (class class class)co 6282    ^m cmap 7417   1c1 9489    < clt 9624   NNcn 10532   ZZ>=cuz 11078   RR+crp 11216   *Metcxmt 18171   Caucca 21424   NrmCVeccnv 25150   BaseSetcba 25152   IndMetcims 25157   ~Hchil 25509    +h cva 25510    .h csm 25511   normhcno 25513    -h cmv 25515   Cauchyccau 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-xneg 11314  df-xadd 11315  df-seq 12071  df-exp 12130  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-psmet 18179  df-xmet 18180  df-met 18181  df-bl 18182  df-cau 21427  df-grpo 24866  df-gid 24867  df-ginv 24868  df-gdiv 24869  df-ablo 24957  df-vc 25112  df-nv 25158  df-va 25161  df-ba 25162  df-sm 25163  df-0v 25164  df-vs 25165  df-nmcv 25166  df-ims 25167  df-hvsub 25561  df-hcau 25563
This theorem is referenced by:  axhcompl-zf  25588  hhcau  25788
  Copyright terms: Public domain W3C validator