![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h1datomi | Structured version Visualization version Unicode version |
Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1datom.1 |
![]() ![]() ![]() ![]() |
h1datom.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
h1datomi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1datom.1 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
2 | 1 | chne0i 27099 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | ssel 3425 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | h1datom.2 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() | |
5 | 4 | h1de2ci 27202 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | oveq1 6295 |
. . . . . . . . . . . . . . . . . 18
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | ax-hvmul0 26656 |
. . . . . . . . . . . . . . . . . . 19
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 4, 7 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | syl6eq 2500 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | eqeq1 2454 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | syl5ibr 225 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | necon3d 2644 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | adantl 468 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | reccl 10274 |
. . . . . . . . . . . . . . . . . . . 20
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | 1 | chshii 26873 |
. . . . . . . . . . . . . . . . . . . . . 22
![]() ![]() ![]() ![]() |
16 | shmulcl 26864 |
. . . . . . . . . . . . . . . . . . . . . 22
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 15, 16 | mp3an1 1350 |
. . . . . . . . . . . . . . . . . . . . 21
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | ex 436 |
. . . . . . . . . . . . . . . . . . . 20
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 14, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 19 | adantr 467 |
. . . . . . . . . . . . . . . . . 18
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | oveq2 6296 |
. . . . . . . . . . . . . . . . . . . 20
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | simpl 459 |
. . . . . . . . . . . . . . . . . . . . . . 23
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | ax-hvmulass 26653 |
. . . . . . . . . . . . . . . . . . . . . . . 24
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | 4, 23 | mp3an3 1352 |
. . . . . . . . . . . . . . . . . . . . . . 23
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 14, 22, 24 | syl2anc 666 |
. . . . . . . . . . . . . . . . . . . . . 22
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | recid2 10282 |
. . . . . . . . . . . . . . . . . . . . . . 23
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 26 | oveq1d 6303 |
. . . . . . . . . . . . . . . . . . . . . 22
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 25, 27 | eqtr3d 2486 |
. . . . . . . . . . . . . . . . . . . . 21
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | ax-hvmulid 26652 |
. . . . . . . . . . . . . . . . . . . . . 22
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 4, 29 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 28, 30 | syl6eq 2500 |
. . . . . . . . . . . . . . . . . . . 20
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 21, 31 | sylan9eqr 2506 |
. . . . . . . . . . . . . . . . . . 19
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32 | eleq1d 2512 |
. . . . . . . . . . . . . . . . . 18
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 20, 33 | sylibd 218 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 34 | exp31 608 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 35 | com23 81 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 36 | imp 431 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 13, 37 | syld 45 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 38 | com3r 82 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 39 | expd 438 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 40 | rexlimdv 2876 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 5, 41 | syl5bi 221 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 3, 42 | sylcom 30 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | 43 | rexlimdv 2876 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 2, 44 | syl5bi 221 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | snssi 4115 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
47 | snssi 4115 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
48 | 4, 47 | ax-mp 5 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
49 | 1 | chssii 26877 |
. . . . . . . . 9
![]() ![]() ![]() ![]() |
50 | 48, 49 | occon2i 26935 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 46, 50 | syl 17 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 1 | ococi 27051 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 51, 52 | syl6sseq 3477 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | 45, 53 | syl6 34 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
55 | 54 | anc2li 560 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | eqss 3446 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
57 | 55, 56 | syl6ibr 231 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | 57 | necon1d 2645 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
59 | neor 2714 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
60 | 58, 59 | sylibr 216 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1668 ax-4 1681 ax-5 1757 ax-6 1804 ax-7 1850 ax-8 1888 ax-9 1895 ax-10 1914 ax-11 1919 ax-12 1932 ax-13 2090 ax-ext 2430 ax-rep 4514 ax-sep 4524 ax-nul 4533 ax-pow 4580 ax-pr 4638 ax-un 6580 ax-inf2 8143 ax-cc 8862 ax-cnex 9592 ax-resscn 9593 ax-1cn 9594 ax-icn 9595 ax-addcl 9596 ax-addrcl 9597 ax-mulcl 9598 ax-mulrcl 9599 ax-mulcom 9600 ax-addass 9601 ax-mulass 9602 ax-distr 9603 ax-i2m1 9604 ax-1ne0 9605 ax-1rid 9606 ax-rnegex 9607 ax-rrecex 9608 ax-cnre 9609 ax-pre-lttri 9610 ax-pre-lttrn 9611 ax-pre-ltadd 9612 ax-pre-mulgt0 9613 ax-pre-sup 9614 ax-addf 9615 ax-mulf 9616 ax-hilex 26645 ax-hfvadd 26646 ax-hvcom 26647 ax-hvass 26648 ax-hv0cl 26649 ax-hvaddid 26650 ax-hfvmul 26651 ax-hvmulid 26652 ax-hvmulass 26653 ax-hvdistr1 26654 ax-hvdistr2 26655 ax-hvmul0 26656 ax-hfi 26725 ax-his1 26728 ax-his2 26729 ax-his3 26730 ax-his4 26731 ax-hcompl 26848 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-3or 985 df-3an 986 df-tru 1446 df-fal 1449 df-ex 1663 df-nf 1667 df-sb 1797 df-eu 2302 df-mo 2303 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2580 df-ne 2623 df-nel 2624 df-ral 2741 df-rex 2742 df-reu 2743 df-rmo 2744 df-rab 2745 df-v 3046 df-sbc 3267 df-csb 3363 df-dif 3406 df-un 3408 df-in 3410 df-ss 3417 df-pss 3419 df-nul 3731 df-if 3881 df-pw 3952 df-sn 3968 df-pr 3970 df-tp 3972 df-op 3974 df-uni 4198 df-int 4234 df-iun 4279 df-iin 4280 df-br 4402 df-opab 4461 df-mpt 4462 df-tr 4497 df-eprel 4744 df-id 4748 df-po 4754 df-so 4755 df-fr 4792 df-se 4793 df-we 4794 df-xp 4839 df-rel 4840 df-cnv 4841 df-co 4842 df-dm 4843 df-rn 4844 df-res 4845 df-ima 4846 df-pred 5379 df-ord 5425 df-on 5426 df-lim 5427 df-suc 5428 df-iota 5545 df-fun 5583 df-fn 5584 df-f 5585 df-f1 5586 df-fo 5587 df-f1o 5588 df-fv 5589 df-isom 5590 df-riota 6250 df-ov 6291 df-oprab 6292 df-mpt2 6293 df-of 6528 df-om 6690 df-1st 6790 df-2nd 6791 df-supp 6912 df-wrecs 7025 df-recs 7087 df-rdg 7125 df-1o 7179 df-2o 7180 df-oadd 7183 df-omul 7184 df-er 7360 df-map 7471 df-pm 7472 df-ixp 7520 df-en 7567 df-dom 7568 df-sdom 7569 df-fin 7570 df-fsupp 7881 df-fi 7922 df-sup 7953 df-inf 7954 df-oi 8022 df-card 8370 df-acn 8373 df-cda 8595 df-pnf 9674 df-mnf 9675 df-xr 9676 df-ltxr 9677 df-le 9678 df-sub 9859 df-neg 9860 df-div 10267 df-nn 10607 df-2 10665 df-3 10666 df-4 10667 df-5 10668 df-6 10669 df-7 10670 df-8 10671 df-9 10672 df-10 10673 df-n0 10867 df-z 10935 df-dec 11049 df-uz 11157 df-q 11262 df-rp 11300 df-xneg 11406 df-xadd 11407 df-xmul 11408 df-ioo 11636 df-ico 11638 df-icc 11639 df-fz 11782 df-fzo 11913 df-fl 12025 df-seq 12211 df-exp 12270 df-hash 12513 df-cj 13155 df-re 13156 df-im 13157 df-sqrt 13291 df-abs 13292 df-clim 13545 df-rlim 13546 df-sum 13746 df-struct 15116 df-ndx 15117 df-slot 15118 df-base 15119 df-sets 15120 df-ress 15121 df-plusg 15196 df-mulr 15197 df-starv 15198 df-sca 15199 df-vsca 15200 df-ip 15201 df-tset 15202 df-ple 15203 df-ds 15205 df-unif 15206 df-hom 15207 df-cco 15208 df-rest 15314 df-topn 15315 df-0g 15333 df-gsum 15334 df-topgen 15335 df-pt 15336 df-prds 15339 df-xrs 15393 df-qtop 15399 df-imas 15400 df-xps 15403 df-mre 15485 df-mrc 15486 df-acs 15488 df-mgm 16481 df-sgrp 16520 df-mnd 16530 df-submnd 16576 df-mulg 16669 df-cntz 16964 df-cmn 17425 df-psmet 18955 df-xmet 18956 df-met 18957 df-bl 18958 df-mopn 18959 df-fbas 18960 df-fg 18961 df-cnfld 18964 df-top 19914 df-bases 19915 df-topon 19916 df-topsp 19917 df-cld 20027 df-ntr 20028 df-cls 20029 df-nei 20107 df-cn 20236 df-cnp 20237 df-lm 20238 df-haus 20324 df-tx 20570 df-hmeo 20763 df-fil 20854 df-fm 20946 df-flim 20947 df-flf 20948 df-xms 21328 df-ms 21329 df-tms 21330 df-cfil 22218 df-cau 22219 df-cmet 22220 df-grpo 25912 df-gid 25913 df-ginv 25914 df-gdiv 25915 df-ablo 26003 df-subgo 26023 df-vc 26158 df-nv 26204 df-va 26207 df-ba 26208 df-sm 26209 df-0v 26210 df-vs 26211 df-nmcv 26212 df-ims 26213 df-dip 26330 df-ssp 26354 df-ph 26447 df-cbn 26498 df-hnorm 26614 df-hba 26615 df-hvsub 26617 df-hlim 26618 df-hcau 26619 df-sh 26853 df-ch 26867 df-oc 26898 df-ch0 26899 |
This theorem is referenced by: h1datom 27228 |
Copyright terms: Public domain | W3C validator |