HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h0elch Structured version   Unicode version

Theorem h0elch 24793
Description: The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
h0elch  |-  0H  e.  CH

Proof of Theorem h0elch
StepHypRef Expression
1 df-ch0 24791 . 2  |-  0H  =  { 0h }
2 hsn0elch 24786 . 2  |-  { 0h }  e.  CH
31, 2eqeltri 2535 1  |-  0H  e.  CH
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1758   {csn 3975   0hc0v 24461   CHcch 24466   0Hc0h 24472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461  ax-addf 9462  ax-mulf 9463  ax-hilex 24536  ax-hfvadd 24537  ax-hvcom 24538  ax-hvass 24539  ax-hv0cl 24540  ax-hvaddid 24541  ax-hfvmul 24542  ax-hvmulid 24543  ax-hvmulass 24544  ax-hvdistr1 24545  ax-hvdistr2 24546  ax-hvmul0 24547  ax-hfi 24616  ax-his1 24619  ax-his2 24620  ax-his3 24621  ax-his4 24622
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-er 7201  df-map 7316  df-pm 7317  df-en 7411  df-dom 7412  df-sdom 7413  df-sup 7792  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-n0 10681  df-z 10748  df-uz 10963  df-q 11055  df-rp 11093  df-xneg 11190  df-xadd 11191  df-xmul 11192  df-icc 11408  df-seq 11908  df-exp 11967  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-topgen 14484  df-psmet 17918  df-xmet 17919  df-met 17920  df-bl 17921  df-mopn 17922  df-top 18619  df-bases 18621  df-topon 18622  df-lm 18949  df-haus 19035  df-grpo 23813  df-gid 23814  df-ginv 23815  df-gdiv 23816  df-ablo 23904  df-vc 24059  df-nv 24105  df-va 24108  df-ba 24109  df-sm 24110  df-0v 24111  df-vs 24112  df-nmcv 24113  df-ims 24114  df-hnorm 24505  df-hvsub 24508  df-hlim 24509  df-sh 24744  df-ch 24759  df-ch0 24791
This theorem is referenced by:  h0elsh  24794  chintcl  24870  omlsi  24942  pjoml  24974  pjoc2  24977  chj0i  24993  chj00i  25025  chm0  25029  chne0  25032  chocin  25033  chj0  25035  chlejb1  25050  chnle  25052  ledi  25078  chsup0  25086  h1datom  25120  cmbr3  25146  cm0  25147  pjoml2  25149  cmcm  25152  cmcm3  25153  lecm  25155  qlaxr3i  25174  nonbooli  25189  pjige0  25229  pjhfo  25244  pj11  25252  ho0f  25290  pjhmop  25689  pjidmco  25720  hst0  25772  largei  25806  mdslmd1lem3  25866  mdslmd1lem4  25867  csmdsymi  25873  elat2  25879  atcveq0  25887  hatomic  25899  atcv0eq  25918  atoml2i  25922  atordi  25923  atord  25927  atcvat2  25928  chirred  25934
  Copyright terms: Public domain W3C validator