MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gxmul Structured version   Unicode version

Theorem gxmul 23777
Description: The group power of a product is the composition of the powers. (Contributed by Paul Chapman, 17-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
gxnn0mul.1  |-  X  =  ran  G
gxnn0mul.2  |-  P  =  ( ^g `  G
)
Assertion
Ref Expression
gxmul  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) )

Proof of Theorem gxmul
StepHypRef Expression
1 gxnn0mul.1 . . . . . . . . . . 11  |-  X  =  ran  G
2 gxnn0mul.2 . . . . . . . . . . 11  |-  P  =  ( ^g `  G
)
31, 2gxnn0mul 23776 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  K  e.  NN0 ) )  -> 
( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) )
433expia 1189 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( J  e.  ZZ  /\  K  e.  NN0 )  ->  ( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) ) )
54expd 436 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( J  e.  ZZ  ->  ( K  e.  NN0  ->  ( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) ) ) )
653impia 1184 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  ->  ( K  e.  NN0  ->  ( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) ) )
76adantr 465 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  /\  K  e.  ZZ )  ->  ( K  e. 
NN0  ->  ( A P ( J  x.  K
) )  =  ( ( A P J ) P K ) ) )
8 znegcl 10692 . . . . . . . . . . . . . . 15  |-  ( J  e.  ZZ  ->  -u J  e.  ZZ )
9 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ZZ  /\  -u K  e.  NN0 )  -> 
-u K  e.  NN0 )
108, 9anim12i 566 . . . . . . . . . . . . . 14  |-  ( ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) )  ->  ( -u J  e.  ZZ  /\  -u K  e.  NN0 )
)
111, 2gxnn0mul 23776 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( -u J  e.  ZZ  /\  -u K  e.  NN0 )
)  ->  ( A P ( -u J  x.  -u K ) )  =  ( ( A P -u J ) P -u K ) )
1210, 11syl3an3 1253 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( A P ( -u J  x.  -u K ) )  =  ( ( A P
-u J ) P
-u K ) )
13 zcn 10663 . . . . . . . . . . . . . . . 16  |-  ( J  e.  ZZ  ->  J  e.  CC )
14 zcn 10663 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ZZ  ->  K  e.  CC )
1514adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  ZZ  /\  -u K  e.  NN0 )  ->  K  e.  CC )
16 mul2neg 9796 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  CC  /\  K  e.  CC )  ->  ( -u J  x.  -u K )  =  ( J  x.  K ) )
1713, 15, 16syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) )  ->  ( -u J  x.  -u K
)  =  ( J  x.  K ) )
18173ad2ant3 1011 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( -u J  x.  -u K )  =  ( J  x.  K
) )
1918oveq2d 6119 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( A P ( -u J  x.  -u K ) )  =  ( A P ( J  x.  K ) ) )
20 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( inv `  G )  =  ( inv `  G )
211, 20, 2gxneg 23765 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  ->  ( A P -u J )  =  ( ( inv `  G ) `  ( A P J ) ) )
22213adant3r 1215 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( A P
-u J )  =  ( ( inv `  G
) `  ( A P J ) ) )
2322oveq1d 6118 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( ( A P -u J ) P -u K )  =  ( ( ( inv `  G ) `
 ( A P J ) ) P
-u K ) )
2412, 19, 233eqtr3d 2483 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( A P ( J  x.  K
) )  =  ( ( ( inv `  G
) `  ( A P J ) ) P
-u K ) )
25 simp1 988 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  G  e.  GrpOp )
261, 2gxcl 23764 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  ->  ( A P J )  e.  X )
27263adant3r 1215 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( A P J )  e.  X
)
28 simp3rl 1061 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  K  e.  ZZ )
2928znegcld 10761 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  -u K  e.  ZZ )
301, 20, 2gxinv 23769 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  ( A P J )  e.  X  /\  -u K  e.  ZZ )  ->  (
( ( inv `  G
) `  ( A P J ) ) P
-u K )  =  ( ( inv `  G
) `  ( ( A P J ) P
-u K ) ) )
3125, 27, 29, 30syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( ( ( inv `  G ) `
 ( A P J ) ) P
-u K )  =  ( ( inv `  G
) `  ( ( A P J ) P
-u K ) ) )
3224, 31eqtrd 2475 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( A P ( J  x.  K
) )  =  ( ( inv `  G
) `  ( ( A P J ) P
-u K ) ) )
331, 20, 2gxneg 23765 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  ( A P J )  e.  X  /\  K  e.  ZZ )  ->  (
( A P J ) P -u K
)  =  ( ( inv `  G ) `
 ( ( A P J ) P K ) ) )
3425, 27, 28, 33syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( ( A P J ) P
-u K )  =  ( ( inv `  G
) `  ( ( A P J ) P K ) ) )
3534fveq2d 5707 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( ( inv `  G ) `  (
( A P J ) P -u K
) )  =  ( ( inv `  G
) `  ( ( inv `  G ) `  ( ( A P J ) P K ) ) ) )
361, 2gxcl 23764 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  ( A P J )  e.  X  /\  K  e.  ZZ )  ->  (
( A P J ) P K )  e.  X )
3725, 27, 28, 36syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( ( A P J ) P K )  e.  X
)
381, 20grpo2inv 23738 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  (
( A P J ) P K )  e.  X )  -> 
( ( inv `  G
) `  ( ( inv `  G ) `  ( ( A P J ) P K ) ) )  =  ( ( A P J ) P K ) )
3925, 37, 38syl2anc 661 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( ( inv `  G ) `  (
( inv `  G
) `  ( ( A P J ) P K ) ) )  =  ( ( A P J ) P K ) )
4032, 35, 393eqtrd 2479 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) ) )  ->  ( A P ( J  x.  K
) )  =  ( ( A P J ) P K ) )
41403expia 1189 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( J  e.  ZZ  /\  ( K  e.  ZZ  /\  -u K  e.  NN0 ) )  ->  ( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) ) )
4241expd 436 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( J  e.  ZZ  ->  ( ( K  e.  ZZ  /\  -u K  e.  NN0 )  ->  ( A P ( J  x.  K
) )  =  ( ( A P J ) P K ) ) ) )
43423impia 1184 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  ->  (
( K  e.  ZZ  /\  -u K  e.  NN0 )  ->  ( A P ( J  x.  K
) )  =  ( ( A P J ) P K ) ) )
4443expdimp 437 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  /\  K  e.  ZZ )  ->  ( -u K  e.  NN0  ->  ( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) ) )
45 elznn0 10673 . . . . . . . 8  |-  ( K  e.  ZZ  <->  ( K  e.  RR  /\  ( K  e.  NN0  \/  -u K  e.  NN0 ) ) )
4645simprbi 464 . . . . . . 7  |-  ( K  e.  ZZ  ->  ( K  e.  NN0  \/  -u K  e.  NN0 ) )
4746adantl 466 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  /\  K  e.  ZZ )  ->  ( K  e. 
NN0  \/  -u K  e. 
NN0 ) )
487, 44, 47mpjaod 381 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  /\  K  e.  ZZ )  ->  ( A P ( J  x.  K
) )  =  ( ( A P J ) P K ) )
4948ex 434 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  J  e.  ZZ )  ->  ( K  e.  ZZ  ->  ( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) ) )
50493expia 1189 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( J  e.  ZZ  ->  ( K  e.  ZZ  ->  ( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) ) ) )
5150impd 431 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( A P ( J  x.  K
) )  =  ( ( A P J ) P K ) ) )
52513impia 1184 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( A P ( J  x.  K ) )  =  ( ( A P J ) P K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4853   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293    x. cmul 9299   -ucneg 9608   NN0cn0 10591   ZZcz 10658   GrpOpcgr 23685   invcgn 23687   ^gcgx 23689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-n0 10592  df-z 10659  df-uz 10874  df-seq 11819  df-grpo 23690  df-gid 23691  df-ginv 23692  df-gx 23694
This theorem is referenced by:  gxmodid  23778
  Copyright terms: Public domain W3C validator