MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzresOLD Structured version   Unicode version

Theorem gsumzresOLD 17035
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) Obsolete version of gsumzres 17031 as of 31-May-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumzclOLD.b  |-  B  =  ( Base `  G
)
gsumzclOLD.0  |-  .0.  =  ( 0g `  G )
gsumzclOLD.z  |-  Z  =  (Cntz `  G )
gsumzclOLD.g  |-  ( ph  ->  G  e.  Mnd )
gsumzclOLD.a  |-  ( ph  ->  A  e.  V )
gsumzclOLD.f  |-  ( ph  ->  F : A --> B )
gsumzclOLD.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzresOLD.s  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  W )
gsumzresOLD.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsumzresOLD  |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )

Proof of Theorem gsumzresOLD
Dummy variables  f 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzclOLD.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
2 gsumzclOLD.a . . . . . . . 8  |-  ( ph  ->  A  e.  V )
3 inex1g 4508 . . . . . . . 8  |-  ( A  e.  V  ->  ( A  i^i  W )  e. 
_V )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  ( A  i^i  W
)  e.  _V )
5 gsumzclOLD.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
65gsumz 16122 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( A  i^i  W )  e.  _V )  -> 
( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  .0.  )
71, 4, 6syl2anc 659 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  .0.  )
85gsumz 16122 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
91, 2, 8syl2anc 659 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
107, 9eqtr4d 2426 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
1110adantr 463 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
12 resres 5198 . . . . . . . 8  |-  ( ( F  |`  A )  |`  W )  =  ( F  |`  ( A  i^i  W ) )
13 gsumzclOLD.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
14 ffn 5639 . . . . . . . . . 10  |-  ( F : A --> B  ->  F  Fn  A )
15 fnresdm 5598 . . . . . . . . . 10  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
1613, 14, 153syl 20 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  A )  =  F )
1716reseq1d 5185 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  A )  |`  W )  =  ( F  |`  W ) )
1812, 17syl5eqr 2437 . . . . . . 7  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
1918adantr 463 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W )
)
20 ssid 3436 . . . . . . . . . 10  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
2120a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
2213, 21gsumcllemOLD 17030 . . . . . . . 8  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
2322reseq1d 5185 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( F  |`  ( A  i^i  W ) )  =  ( ( k  e.  A  |->  .0.  )  |`  ( A  i^i  W ) ) )
24 inss1 3632 . . . . . . . 8  |-  ( A  i^i  W )  C_  A
25 resmpt 5235 . . . . . . . 8  |-  ( ( A  i^i  W ) 
C_  A  ->  (
( k  e.  A  |->  .0.  )  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W
)  |->  .0.  ) )
2624, 25ax-mp 5 . . . . . . 7  |-  ( ( k  e.  A  |->  .0.  )  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W ) 
|->  .0.  )
2723, 26syl6eq 2439 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( F  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W )  |->  .0.  ) )
2819, 27eqtr3d 2425 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( F  |`  W )  =  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )
2928oveq2d 6212 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) ) )
3022oveq2d 6212 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
3111, 29, 303eqtr4d 2433 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )
3231ex 432 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G  gsumg  F ) ) )
33 f1ofo 5731 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
34 forn 5706 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
3533, 34syl 16 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
3635ad2antll 726 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
37 gsumzresOLD.s . . . . . . . . . . 11  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  W )
3837adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  W )
3936, 38eqsstrd 3451 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  C_  W )
40 cores 5418 . . . . . . . . 9  |-  ( ran  f  C_  W  ->  ( ( F  |`  W )  o.  f )  =  ( F  o.  f
) )
4139, 40syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( F  |`  W )  o.  f
)  =  ( F  o.  f ) )
4241seqeq3d 12018 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  seq 1 ( ( +g  `  G ) ,  ( ( F  |`  W )  o.  f
) )  =  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) )
4342fveq1d 5776 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (  seq 1
( ( +g  `  G
) ,  ( ( F  |`  W )  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
44 gsumzclOLD.b . . . . . . 7  |-  B  =  ( Base `  G
)
45 eqid 2382 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
46 gsumzclOLD.z . . . . . . 7  |-  Z  =  (Cntz `  G )
471adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
484adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( A  i^i  W )  e.  _V )
4913adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
50 fssres 5659 . . . . . . . . 9  |-  ( ( F : A --> B  /\  ( A  i^i  W ) 
C_  A )  -> 
( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
5149, 24, 50sylancl 660 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
5218feq1d 5625 . . . . . . . . 9  |-  ( ph  ->  ( ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B  <-> 
( F  |`  W ) : ( A  i^i  W ) --> B ) )
5352biimpa 482 . . . . . . . 8  |-  ( (
ph  /\  ( F  |`  ( A  i^i  W
) ) : ( A  i^i  W ) --> B )  ->  ( F  |`  W ) : ( A  i^i  W
) --> B )
5451, 53syldan 468 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  |`  W ) : ( A  i^i  W ) --> B )
55 gsumzclOLD.c . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
56 resss 5209 . . . . . . . . . 10  |-  ( F  |`  W )  C_  F
57 rnss 5144 . . . . . . . . . 10  |-  ( ( F  |`  W )  C_  F  ->  ran  ( F  |`  W )  C_  ran  F )
5856, 57ax-mp 5 . . . . . . . . 9  |-  ran  ( F  |`  W )  C_  ran  F
5946cntzidss 16492 . . . . . . . . 9  |-  ( ( ran  F  C_  ( Z `  ran  F )  /\  ran  ( F  |`  W )  C_  ran  F )  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
6055, 58, 59sylancl 660 . . . . . . . 8  |-  ( ph  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
6160adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
62 simprl 754 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
63 f1of1 5723 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
6463ad2antll 726 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
65 cnvimass 5269 . . . . . . . . . . 11  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
66 fdm 5643 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  dom  F  =  A )
6713, 66syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  A )
6865, 67syl5sseq 3465 . . . . . . . . . 10  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  A )
6968, 37ssind 3636 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( A  i^i  W ) )
7069adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ( A  i^i  W ) )
71 f1ss 5694 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( A  i^i  W ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( A  i^i  W ) )
7264, 70, 71syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( A  i^i  W ) )
73 cnvss 5088 . . . . . . . . 9  |-  ( ( F  |`  W )  C_  F  ->  `' ( F  |`  W )  C_  `' F )
74 imass1 5283 . . . . . . . . 9  |-  ( `' ( F  |`  W ) 
C_  `' F  -> 
( `' ( F  |`  W ) " ( _V  \  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
7556, 73, 74mp2b 10 . . . . . . . 8  |-  ( `' ( F  |`  W )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) )
7675, 36syl5sseqr 3466 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' ( F  |`  W ) " ( _V  \  {  .0.  } ) ) 
C_  ran  f )
77 eqid 2382 . . . . . . 7  |-  ( `' ( ( F  |`  W )  o.  f
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( ( F  |`  W )  o.  f
) " ( _V 
\  {  .0.  }
) )
7844, 5, 45, 46, 47, 48, 54, 61, 62, 72, 76, 77gsumval3OLD 17025 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  ( F  |`  W ) )  =  (  seq 1 ( ( +g  `  G
) ,  ( ( F  |`  W )  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
792adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
8055adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
8168adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
82 f1ss 5694 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
8364, 81, 82syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
8420, 36syl5sseqr 3466 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ran  f )
85 eqid 2382 . . . . . . 7  |-  ( `' ( F  o.  f
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  o.  f ) " ( _V  \  {  .0.  }
) )
8644, 5, 45, 46, 47, 79, 49, 80, 62, 83, 84, 85gsumval3OLD 17025 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
8743, 78, 863eqtr4d 2433 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G  gsumg  F ) )
8887expr 613 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
8988exlimdv 1732 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
9089expimpd 601 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G  gsumg  F ) ) )
91 gsumzresOLD.w . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
92 fz1f1o 13534 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
9391, 92syl 16 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
9432, 90, 93mpjaod 379 1  |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    = wceq 1399   E.wex 1620    e. wcel 1826   _Vcvv 3034    \ cdif 3386    i^i cin 3388    C_ wss 3389   (/)c0 3711   {csn 3944    |-> cmpt 4425   `'ccnv 4912   dom cdm 4913   ran crn 4914    |` cres 4915   "cima 4916    o. ccom 4917    Fn wfn 5491   -->wf 5492   -1-1->wf1 5493   -onto->wfo 5494   -1-1-onto->wf1o 5495   ` cfv 5496  (class class class)co 6196   Fincfn 7435   1c1 9404   NNcn 10452   ...cfz 11593    seqcseq 12010   #chash 12307   Basecbs 14634   +g cplusg 14702   0gc0g 14847    gsumg cgsu 14848   Mndcmnd 16036  Cntzccntz 16470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-n0 10713  df-z 10782  df-uz 11002  df-fz 11594  df-fzo 11718  df-seq 12011  df-hash 12308  df-0g 14849  df-gsum 14850  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-cntz 16472
This theorem is referenced by:  gsumresOLD  17042  gsumzsplitOLD  17062  gsumptOLD  17103  dmdprdsplitlemOLD  17198  dpjidclOLD  17227
  Copyright terms: Public domain W3C validator