MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzres Structured version   Unicode version

Theorem gsumzres 17041
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumzcl.b  |-  B  =  ( Base `  G
)
gsumzcl.0  |-  .0.  =  ( 0g `  G )
gsumzcl.z  |-  Z  =  (Cntz `  G )
gsumzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumzcl.a  |-  ( ph  ->  A  e.  V )
gsumzcl.f  |-  ( ph  ->  F : A --> B )
gsumzcl.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzres.s  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
gsumzres.w  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsumzres  |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )

Proof of Theorem gsumzres
Dummy variables  f 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
2 gsumzcl.a . . . . . . . 8  |-  ( ph  ->  A  e.  V )
3 inex1g 4599 . . . . . . . 8  |-  ( A  e.  V  ->  ( A  i^i  W )  e. 
_V )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  ( A  i^i  W
)  e.  _V )
5 gsumzcl.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
65gsumz 16132 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( A  i^i  W )  e.  _V )  -> 
( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  .0.  )
71, 4, 6syl2anc 661 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  .0.  )
85gsumz 16132 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
91, 2, 8syl2anc 661 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
107, 9eqtr4d 2501 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
1110adantr 465 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
12 resres 5296 . . . . . . . 8  |-  ( ( F  |`  A )  |`  W )  =  ( F  |`  ( A  i^i  W ) )
13 gsumzcl.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
14 ffn 5737 . . . . . . . . . 10  |-  ( F : A --> B  ->  F  Fn  A )
15 fnresdm 5696 . . . . . . . . . 10  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
1613, 14, 153syl 20 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  A )  =  F )
1716reseq1d 5282 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  A )  |`  W )  =  ( F  |`  W ) )
1812, 17syl5eqr 2512 . . . . . . 7  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
1918adantr 465 . . . . . 6  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
20 fvex 5882 . . . . . . . . . . 11  |-  ( 0g
`  G )  e. 
_V
215, 20eqeltri 2541 . . . . . . . . . 10  |-  .0.  e.  _V
2221a1i 11 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  _V )
23 ssid 3518 . . . . . . . . . 10  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
2423a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
2513, 2, 22, 24gsumcllem 17039 . . . . . . . 8  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  )
)
2625reseq1d 5282 . . . . . . 7  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  ( A  i^i  W ) )  =  ( ( k  e.  A  |->  .0.  )  |`  ( A  i^i  W
) ) )
27 inss1 3714 . . . . . . . 8  |-  ( A  i^i  W )  C_  A
28 resmpt 5333 . . . . . . . 8  |-  ( ( A  i^i  W ) 
C_  A  ->  (
( k  e.  A  |->  .0.  )  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W
)  |->  .0.  ) )
2927, 28ax-mp 5 . . . . . . 7  |-  ( ( k  e.  A  |->  .0.  )  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W ) 
|->  .0.  )
3026, 29syl6eq 2514 . . . . . 6  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  ( A  i^i  W ) )  =  ( k  e.  ( A  i^i  W
)  |->  .0.  ) )
3119, 30eqtr3d 2500 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  |`  W )  =  ( k  e.  ( A  i^i  W
)  |->  .0.  ) )
3231oveq2d 6312 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  ( k  e.  ( A  i^i  W ) 
|->  .0.  ) ) )
3325oveq2d 6312 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
3411, 32, 333eqtr4d 2508 . . 3  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )
3534ex 434 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
36 f1ofo 5829 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )
)
37 forn 5804 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp  .0.  ) )
3836, 37syl 16 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp 
.0.  ) )
3938ad2antll 728 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  f  =  ( F supp  .0.  )
)
40 gsumzres.s . . . . . . . . . . 11  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
4140adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  W )
4239, 41eqsstrd 3533 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  f  C_  W )
43 cores 5516 . . . . . . . . 9  |-  ( ran  f  C_  W  ->  ( ( F  |`  W )  o.  f )  =  ( F  o.  f
) )
4442, 43syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( F  |`  W )  o.  f )  =  ( F  o.  f ) )
4544seqeq3d 12118 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  seq 1
( ( +g  `  G
) ,  ( ( F  |`  W )  o.  f ) )  =  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) )
4645fveq1d 5874 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( ( F  |`  W )  o.  f ) ) `
 ( # `  ( F supp  .0.  ) ) )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( F supp  .0.  ) ) ) )
47 gsumzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
48 eqid 2457 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
49 gsumzcl.z . . . . . . 7  |-  Z  =  (Cntz `  G )
501adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  G  e.  Mnd )
514adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( A  i^i  W )  e.  _V )
5213adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  F : A
--> B )
53 fssres 5757 . . . . . . . . 9  |-  ( ( F : A --> B  /\  ( A  i^i  W ) 
C_  A )  -> 
( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
5452, 27, 53sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  |`  ( A  i^i  W
) ) : ( A  i^i  W ) --> B )
5518feq1d 5723 . . . . . . . . 9  |-  ( ph  ->  ( ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B  <-> 
( F  |`  W ) : ( A  i^i  W ) --> B ) )
5655biimpa 484 . . . . . . . 8  |-  ( (
ph  /\  ( F  |`  ( A  i^i  W
) ) : ( A  i^i  W ) --> B )  ->  ( F  |`  W ) : ( A  i^i  W
) --> B )
5754, 56syldan 470 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  |`  W ) : ( A  i^i  W ) --> B )
58 gsumzcl.c . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
59 resss 5307 . . . . . . . . . 10  |-  ( F  |`  W )  C_  F
60 rnss 5241 . . . . . . . . . 10  |-  ( ( F  |`  W )  C_  F  ->  ran  ( F  |`  W )  C_  ran  F )
6159, 60ax-mp 5 . . . . . . . . 9  |-  ran  ( F  |`  W )  C_  ran  F
6249cntzidss 16502 . . . . . . . . 9  |-  ( ( ran  F  C_  ( Z `  ran  F )  /\  ran  ( F  |`  W )  C_  ran  F )  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
6358, 61, 62sylancl 662 . . . . . . . 8  |-  ( ph  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
6463adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  ( F  |`  W )  C_  ( Z `  ran  ( F  |`  W ) ) )
65 simprl 756 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( # `  ( F supp  .0.  ) )  e.  NN )
66 f1of1 5821 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )
)
6766ad2antll 728 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> ( F supp  .0.  ) )
68 suppssdm 6930 . . . . . . . . . . 11  |-  ( F supp 
.0.  )  C_  dom  F
69 fdm 5741 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  dom  F  =  A )
7013, 69syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  A )
7168, 70syl5sseq 3547 . . . . . . . . . 10  |-  ( ph  ->  ( F supp  .0.  )  C_  A )
7271, 40ssind 3718 . . . . . . . . 9  |-  ( ph  ->  ( F supp  .0.  )  C_  ( A  i^i  W
) )
7372adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ( A  i^i  W ) )
74 f1ss 5792 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )  /\  ( F supp  .0.  )  C_  ( A  i^i  W
) )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( A  i^i  W
) )
7567, 73, 74syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> ( A  i^i  W ) )
76 fex 6146 . . . . . . . . . . . . 13  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
7713, 2, 76syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  _V )
78 ressuppss 6937 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  |`  W ) supp  .0.  )  C_  ( F supp  .0.  )
)
7977, 21, 78sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  |`  W ) supp  .0.  )  C_  ( F supp  .0.  )
)
80 sseq2 3521 . . . . . . . . . . 11  |-  ( ran  f  =  ( F supp 
.0.  )  ->  (
( ( F  |`  W ) supp  .0.  )  C_ 
ran  f  <->  ( ( F  |`  W ) supp  .0.  )  C_  ( F supp  .0.  ) ) )
8179, 80syl5ibr 221 . . . . . . . . . 10  |-  ( ran  f  =  ( F supp 
.0.  )  ->  ( ph  ->  ( ( F  |`  W ) supp  .0.  )  C_ 
ran  f ) )
8236, 37, 813syl 20 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  (
ph  ->  ( ( F  |`  W ) supp  .0.  )  C_ 
ran  f ) )
8382adantl 466 . . . . . . . 8  |-  ( ( ( # `  ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  ) )  -> 
( ph  ->  ( ( F  |`  W ) supp  .0.  )  C_  ran  f
) )
8483impcom 430 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( F  |`  W ) supp  .0.  )  C_  ran  f )
85 eqid 2457 . . . . . . 7  |-  ( ( ( F  |`  W )  o.  f ) supp  .0.  )  =  ( (
( F  |`  W )  o.  f ) supp  .0.  )
8647, 5, 48, 49, 50, 51, 57, 64, 65, 75, 84, 85gsumval3 17038 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  ( F  |`  W )
)  =  (  seq 1 ( ( +g  `  G ) ,  ( ( F  |`  W )  o.  f ) ) `
 ( # `  ( F supp  .0.  ) ) ) )
872adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  A  e.  V )
8858adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  F  C_  ( Z `  ran  F
) )
8971adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  A )
90 f1ss 5792 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )  /\  ( F supp  .0.  )  C_  A )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A )
9167, 89, 90syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> A
)
9223, 39syl5sseqr 3548 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ran  f )
93 eqid 2457 . . . . . . 7  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
9447, 5, 48, 49, 50, 87, 52, 88, 65, 91, 92, 93gsumval3 17038 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) ) )
9546, 86, 943eqtr4d 2508 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  ( F  |`  W )
)  =  ( G 
gsumg  F ) )
9695expr 615 . . . 4  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
9796exlimdv 1725 . . 3  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) ) )
9897expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  ( F supp  .0.  )
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
)  ->  ( G  gsumg  ( F  |`  W )
)  =  ( G 
gsumg  F ) ) )
99 gsumzres.w . . 3  |-  ( ph  ->  F finSupp  .0.  )
100 fsuppimp 7853 . . . 4  |-  ( F finSupp  .0.  ->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin ) )
101100simprd 463 . . 3  |-  ( F finSupp  .0.  ->  ( F supp  .0.  )  e.  Fin )
102 fz1f1o 13544 . . 3  |-  ( ( F supp  .0.  )  e.  Fin  ->  ( ( F supp 
.0.  )  =  (/)  \/  ( ( # `  ( F supp  .0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
10399, 101, 1023syl 20 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  \/  (
( # `  ( F supp 
.0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
10435, 98, 103mpjaod 381 1  |-  ( ph  ->  ( G  gsumg  ( F  |`  W ) )  =  ( G 
gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819   _Vcvv 3109    i^i cin 3470    C_ wss 3471   (/)c0 3793   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008   ran crn 5009    |` cres 5010    o. ccom 5012   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   supp csupp 6917   Fincfn 7535   finSupp cfsupp 7847   1c1 9510   NNcn 10556   ...cfz 11697    seqcseq 12110   #chash 12408   Basecbs 14644   +g cplusg 14712   0gc0g 14857    gsumg cgsu 14858   Mndcmnd 16046  Cntzccntz 16480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-seq 12111  df-hash 12409  df-0g 14859  df-gsum 14860  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-cntz 16482
This theorem is referenced by:  gsumres  17048  gsumzsplit  17071  gsumpt  17115  dmdprdsplitlem  17211  dpjidcl  17234  mplcoe5  18258
  Copyright terms: Public domain W3C validator