MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzoppgOLD Structured version   Unicode version

Theorem gsumzoppgOLD 17166
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) Obsolete version of gsumzoppg 17165 as of 6-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumzoppgOLD.b  |-  B  =  ( Base `  G
)
gsumzoppgOLD.0  |-  .0.  =  ( 0g `  G )
gsumzoppgOLD.z  |-  Z  =  (Cntz `  G )
gsumzoppgOLD.o  |-  O  =  (oppg
`  G )
gsumzoppgOLD.g  |-  ( ph  ->  G  e.  Mnd )
gsumzoppgOLD.a  |-  ( ph  ->  A  e.  V )
gsumzoppgOLD.f  |-  ( ph  ->  F : A --> B )
gsumzoppgOLD.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzoppgOLD.n  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsumzoppgOLD  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )

Proof of Theorem gsumzoppgOLD
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzoppgOLD.g . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
2 gsumzoppgOLD.o . . . . . . . . 9  |-  O  =  (oppg
`  G )
32oppgmnd 16588 . . . . . . . 8  |-  ( G  e.  Mnd  ->  O  e.  Mnd )
41, 3syl 16 . . . . . . 7  |-  ( ph  ->  O  e.  Mnd )
5 gsumzoppgOLD.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
6 gsumzoppgOLD.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
72, 6oppgid 16590 . . . . . . . 8  |-  .0.  =  ( 0g `  O )
87gsumz 16204 . . . . . . 7  |-  ( ( O  e.  Mnd  /\  A  e.  V )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
94, 5, 8syl2anc 659 . . . . . 6  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
106gsumz 16204 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
111, 5, 10syl2anc 659 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
129, 11eqtr4d 2498 . . . . 5  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
1312adantr 463 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
14 gsumzoppgOLD.f . . . . . 6  |-  ( ph  ->  F : A --> B )
15 ssid 3508 . . . . . . 7  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
1615a1i 11 . . . . . 6  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
1714, 16gsumcllemOLD 17112 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
1817oveq2d 6286 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( O  gsumg  ( k  e.  A  |->  .0.  ) ) )
1917oveq2d 6286 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
2013, 18, 193eqtr4d 2505 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
2120ex 432 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
22 simprl 754 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
23 nnuz 11117 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23syl6eleq 2552 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
2514adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
26 ffn 5713 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  F  Fn  A )
27 dffn4 5783 . . . . . . . . . . . 12  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
2826, 27sylib 196 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
29 fof 5777 . . . . . . . . . . 11  |-  ( F : A -onto-> ran  F  ->  F : A --> ran  F
)
3025, 28, 293syl 20 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ran  F )
311adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
32 gsumzoppgOLD.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  G
)
3332submacs 16195 . . . . . . . . . . . 12  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
34 acsmre 15141 . . . . . . . . . . . 12  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
3531, 33, 343syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (SubMnd `  G )  e.  (Moore `  B )
)
36 eqid 2454 . . . . . . . . . . 11  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
37 frn 5719 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  ran  F  C_  B )
3825, 37syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  B
)
3935, 36, 38mrcssidd 15114 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )
40 fss 5721 . . . . . . . . . 10  |-  ( ( F : A --> ran  F  /\  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  F : A --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
4130, 39, 40syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )
42 f1of1 5797 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
4342ad2antll 726 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
44 cnvimass 5345 . . . . . . . . . . . 12  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
45 fdm 5717 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  dom  F  =  A )
4625, 45syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  dom  F  =  A )
4744, 46syl5sseq 3537 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
48 f1ss 5768 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
4943, 47, 48syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
50 f1f 5763 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
5149, 50syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
52 fco 5723 . . . . . . . . 9  |-  ( ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )  -> 
( F  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
5341, 51, 52syl2anc 659 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
5453ffvelrnda 6007 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  x )  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
5536mrccl 15100 . . . . . . . . . 10  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  ran  F  C_  B
)  ->  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  e.  (SubMnd `  G
) )
5635, 38, 55syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  G )
)
572oppgsubm 16596 . . . . . . . . 9  |-  (SubMnd `  G )  =  (SubMnd `  O )
5856, 57syl6eleq 2552 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  O )
)
59 eqid 2454 . . . . . . . . . 10  |-  ( +g  `  O )  =  ( +g  `  O )
6059submcl 16183 . . . . . . . . 9  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
61603expb 1195 . . . . . . . 8  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  (
x  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
6258, 61sylan 469 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
63 gsumzoppgOLD.c . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
6463adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
65 gsumzoppgOLD.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
66 eqid 2454 . . . . . . . . . . . . . 14  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
6765, 36, 66cntzspan 17049 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  ran  F  C_  ( Z `  ran  F ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
6831, 64, 67syl2anc 659 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
6966, 65submcmn2 17046 . . . . . . . . . . . . 13  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  e.  (SubMnd `  G )  ->  (
( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  e. CMnd  <->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
7056, 69syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) 
C_  ( Z `  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
7168, 70mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )
7271sselda 3489 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  ->  x  e.  ( Z `  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) ) )
73 eqid 2454 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
7473, 65cntzi 16566 . . . . . . . . . 10  |-  ( ( x  e.  ( Z `
 ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
7572, 74sylan 469 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
7673, 2, 59oppgplus 16583 . . . . . . . . 9  |-  ( x ( +g  `  O
) y )  =  ( y ( +g  `  G ) x )
7775, 76syl6reqr 2514 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  O ) y )  =  ( x ( +g  `  G
) y ) )
7877anasss 645 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  =  ( x ( +g  `  G ) y ) )
7924, 54, 62, 78seqfeq4 12138 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
802, 32oppgbas 16585 . . . . . . 7  |-  B  =  ( Base `  O
)
81 eqid 2454 . . . . . . 7  |-  (Cntz `  O )  =  (Cntz `  O )
824adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  O  e.  Mnd )
835adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
842, 65oppgcntz 16598 . . . . . . . 8  |-  ( Z `
 ran  F )  =  ( (Cntz `  O ) `  ran  F )
8564, 84syl6sseq 3535 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(Cntz `  O ) `  ran  F ) )
86 f1ofo 5805 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
87 forn 5780 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
8886, 87syl 16 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
8988ad2antll 726 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
9015, 89syl5sseqr 3538 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ran  f )
91 eqid 2454 . . . . . . 7  |-  ( `' ( F  o.  f
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  o.  f ) " ( _V  \  {  .0.  }
) )
9280, 7, 59, 81, 82, 83, 25, 85, 22, 49, 90, 91gsumval3OLD 17107 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
9332, 6, 73, 65, 31, 83, 25, 64, 22, 49, 90, 91gsumval3OLD 17107 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
9479, 92, 933eqtr4d 2505 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
9594expr 613 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
9695exlimdv 1729 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( O  gsumg  F )  =  ( G  gsumg  F ) ) )
9796expimpd 601 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
98 gsumzoppgOLD.n . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
99 fz1f1o 13614 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
10098, 99syl 16 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
10121, 97, 100mpjaod 379 1  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   _Vcvv 3106    \ cdif 3458    C_ wss 3461   (/)c0 3783   {csn 4016    |-> cmpt 4497   `'ccnv 4987   dom cdm 4988   ran crn 4989   "cima 4991    o. ccom 4992    Fn wfn 5565   -->wf 5566   -1-1->wf1 5567   -onto->wfo 5568   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270   Fincfn 7509   1c1 9482   NNcn 10531   ZZ>=cuz 11082   ...cfz 11675    seqcseq 12089   #chash 12387   Basecbs 14716   ↾s cress 14717   +g cplusg 14784   0gc0g 14929    gsumg cgsu 14930  Moorecmre 15071  mrClscmrc 15072  ACScacs 15074   Mndcmnd 16118  SubMndcsubmnd 16164  Cntzccntz 16552  oppgcoppg 16579  CMndccmn 16997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-0g 14931  df-gsum 14932  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-cntz 16554  df-oppg 16580  df-cmn 16999
This theorem is referenced by:  gsumzinvOLD  17168
  Copyright terms: Public domain W3C validator