MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzoppgOLD Structured version   Unicode version

Theorem gsumzoppgOLD 16783
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) Obsolete version of gsumzoppg 16782 as of 6-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumzoppgOLD.b  |-  B  =  ( Base `  G
)
gsumzoppgOLD.0  |-  .0.  =  ( 0g `  G )
gsumzoppgOLD.z  |-  Z  =  (Cntz `  G )
gsumzoppgOLD.o  |-  O  =  (oppg
`  G )
gsumzoppgOLD.g  |-  ( ph  ->  G  e.  Mnd )
gsumzoppgOLD.a  |-  ( ph  ->  A  e.  V )
gsumzoppgOLD.f  |-  ( ph  ->  F : A --> B )
gsumzoppgOLD.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzoppgOLD.n  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsumzoppgOLD  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )

Proof of Theorem gsumzoppgOLD
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzoppgOLD.g . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
2 gsumzoppgOLD.o . . . . . . . . 9  |-  O  =  (oppg
`  G )
32oppgmnd 16203 . . . . . . . 8  |-  ( G  e.  Mnd  ->  O  e.  Mnd )
41, 3syl 16 . . . . . . 7  |-  ( ph  ->  O  e.  Mnd )
5 gsumzoppgOLD.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
6 gsumzoppgOLD.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
72, 6oppgid 16205 . . . . . . . 8  |-  .0.  =  ( 0g `  O )
87gsumz 15836 . . . . . . 7  |-  ( ( O  e.  Mnd  /\  A  e.  V )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
94, 5, 8syl2anc 661 . . . . . 6  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
106gsumz 15836 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
111, 5, 10syl2anc 661 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
129, 11eqtr4d 2511 . . . . 5  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
1312adantr 465 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
14 gsumzoppgOLD.f . . . . . 6  |-  ( ph  ->  F : A --> B )
15 ssid 3523 . . . . . . 7  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
1615a1i 11 . . . . . 6  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
1714, 16gsumcllemOLD 16728 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
1817oveq2d 6301 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( O  gsumg  ( k  e.  A  |->  .0.  ) ) )
1917oveq2d 6301 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
2013, 18, 193eqtr4d 2518 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
2120ex 434 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
22 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
23 nnuz 11118 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23syl6eleq 2565 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
2514adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
26 ffn 5731 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  F  Fn  A )
27 dffn4 5801 . . . . . . . . . . . 12  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
2826, 27sylib 196 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
29 fof 5795 . . . . . . . . . . 11  |-  ( F : A -onto-> ran  F  ->  F : A --> ran  F
)
3025, 28, 293syl 20 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ran  F )
311adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
32 gsumzoppgOLD.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  G
)
3332submacs 15818 . . . . . . . . . . . 12  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
34 acsmre 14910 . . . . . . . . . . . 12  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
3531, 33, 343syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (SubMnd `  G )  e.  (Moore `  B )
)
36 eqid 2467 . . . . . . . . . . 11  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
37 frn 5737 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  ran  F  C_  B )
3825, 37syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  B
)
3935, 36, 38mrcssidd 14883 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )
40 fss 5739 . . . . . . . . . 10  |-  ( ( F : A --> ran  F  /\  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  F : A --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
4130, 39, 40syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )
42 f1of1 5815 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
4342ad2antll 728 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
44 cnvimass 5357 . . . . . . . . . . . 12  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
45 fdm 5735 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  dom  F  =  A )
4625, 45syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  dom  F  =  A )
4744, 46syl5sseq 3552 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
48 f1ss 5786 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
4943, 47, 48syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
50 f1f 5781 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
5149, 50syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
52 fco 5741 . . . . . . . . 9  |-  ( ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )  -> 
( F  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
5341, 51, 52syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
5453ffvelrnda 6022 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  x )  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
5536mrccl 14869 . . . . . . . . . 10  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  ran  F  C_  B
)  ->  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  e.  (SubMnd `  G
) )
5635, 38, 55syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  G )
)
572oppgsubm 16211 . . . . . . . . 9  |-  (SubMnd `  G )  =  (SubMnd `  O )
5856, 57syl6eleq 2565 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  O )
)
59 eqid 2467 . . . . . . . . . 10  |-  ( +g  `  O )  =  ( +g  `  O )
6059submcl 15806 . . . . . . . . 9  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
61603expb 1197 . . . . . . . 8  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  (
x  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
6258, 61sylan 471 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
63 gsumzoppgOLD.c . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
6463adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
65 gsumzoppgOLD.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
66 eqid 2467 . . . . . . . . . . . . . 14  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
6765, 36, 66cntzspan 16665 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  ran  F  C_  ( Z `  ran  F ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
6831, 64, 67syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
6966, 65submcmn2 16662 . . . . . . . . . . . . 13  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  e.  (SubMnd `  G )  ->  (
( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  e. CMnd  <->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
7056, 69syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) 
C_  ( Z `  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
7168, 70mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )
7271sselda 3504 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  ->  x  e.  ( Z `  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) ) )
73 eqid 2467 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
7473, 65cntzi 16181 . . . . . . . . . 10  |-  ( ( x  e.  ( Z `
 ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
7572, 74sylan 471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
7673, 2, 59oppgplus 16198 . . . . . . . . 9  |-  ( x ( +g  `  O
) y )  =  ( y ( +g  `  G ) x )
7775, 76syl6reqr 2527 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  O ) y )  =  ( x ( +g  `  G
) y ) )
7877anasss 647 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  =  ( x ( +g  `  G ) y ) )
7924, 54, 62, 78seqfeq4 12125 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
802, 32oppgbas 16200 . . . . . . 7  |-  B  =  ( Base `  O
)
81 eqid 2467 . . . . . . 7  |-  (Cntz `  O )  =  (Cntz `  O )
824adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  O  e.  Mnd )
835adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
842, 65oppgcntz 16213 . . . . . . . 8  |-  ( Z `
 ran  F )  =  ( (Cntz `  O ) `  ran  F )
8564, 84syl6sseq 3550 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(Cntz `  O ) `  ran  F ) )
86 f1ofo 5823 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
87 forn 5798 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
8886, 87syl 16 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
8988ad2antll 728 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
9015, 89syl5sseqr 3553 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ran  f )
91 eqid 2467 . . . . . . 7  |-  ( `' ( F  o.  f
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  o.  f ) " ( _V  \  {  .0.  }
) )
9280, 7, 59, 81, 82, 83, 25, 85, 22, 49, 90, 91gsumval3OLD 16723 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
9332, 6, 73, 65, 31, 83, 25, 64, 22, 49, 90, 91gsumval3OLD 16723 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
9479, 92, 933eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
9594expr 615 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
9695exlimdv 1700 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( O  gsumg  F )  =  ( G  gsumg  F ) ) )
9796expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
98 gsumzoppgOLD.n . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
99 fz1f1o 13498 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
10098, 99syl 16 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
10121, 97, 100mpjaod 381 1  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3113    \ cdif 3473    C_ wss 3476   (/)c0 3785   {csn 4027    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002    o. ccom 5003    Fn wfn 5583   -->wf 5584   -1-1->wf1 5585   -onto->wfo 5586   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6285   Fincfn 7517   1c1 9494   NNcn 10537   ZZ>=cuz 11083   ...cfz 11673    seqcseq 12076   #chash 12374   Basecbs 14493   ↾s cress 14494   +g cplusg 14558   0gc0g 14698    gsumg cgsu 14699  Moorecmre 14840  mrClscmrc 14841  ACScacs 14843   Mndcmnd 15729  SubMndcsubmnd 15788  Cntzccntz 16167  oppgcoppg 16194  CMndccmn 16613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6956  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-oi 7936  df-card 8321  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-2 10595  df-n0 10797  df-z 10866  df-uz 11084  df-fz 11674  df-fzo 11794  df-seq 12077  df-hash 12375  df-ndx 14496  df-slot 14497  df-base 14498  df-sets 14499  df-ress 14500  df-plusg 14571  df-0g 14700  df-gsum 14701  df-mre 14844  df-mrc 14845  df-acs 14847  df-mnd 15735  df-submnd 15790  df-cntz 16169  df-oppg 16195  df-cmn 16615
This theorem is referenced by:  gsumzinvOLD  16785
  Copyright terms: Public domain W3C validator