MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzoppg Structured version   Unicode version

Theorem gsumzoppg 16432
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzoppg.b  |-  B  =  ( Base `  G
)
gsumzoppg.0  |-  .0.  =  ( 0g `  G )
gsumzoppg.z  |-  Z  =  (Cntz `  G )
gsumzoppg.o  |-  O  =  (oppg
`  G )
gsumzoppg.g  |-  ( ph  ->  G  e.  Mnd )
gsumzoppg.a  |-  ( ph  ->  A  e.  V )
gsumzoppg.f  |-  ( ph  ->  F : A --> B )
gsumzoppg.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzoppg.n  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsumzoppg  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )

Proof of Theorem gsumzoppg
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzoppg.g . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
2 gsumzoppg.o . . . . . . . . 9  |-  O  =  (oppg
`  G )
32oppgmnd 15862 . . . . . . . 8  |-  ( G  e.  Mnd  ->  O  e.  Mnd )
41, 3syl 16 . . . . . . 7  |-  ( ph  ->  O  e.  Mnd )
5 gsumzoppg.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
6 gsumzoppg.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
72, 6oppgid 15864 . . . . . . . 8  |-  .0.  =  ( 0g `  O )
87gsumz 15504 . . . . . . 7  |-  ( ( O  e.  Mnd  /\  A  e.  V )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
94, 5, 8syl2anc 656 . . . . . 6  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
106gsumz 15504 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
111, 5, 10syl2anc 656 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
129, 11eqtr4d 2476 . . . . 5  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
1312adantr 462 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
14 gsumzoppg.f . . . . . 6  |-  ( ph  ->  F : A --> B )
15 fvex 5698 . . . . . . . 8  |-  ( 0g
`  G )  e. 
_V
166, 15eqeltri 2511 . . . . . . 7  |-  .0.  e.  _V
1716a1i 11 . . . . . 6  |-  ( ph  ->  .0.  e.  _V )
18 ssid 3372 . . . . . . . 8  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
1918a1i 11 . . . . . . 7  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
2014, 5jca 529 . . . . . . . . . . 11  |-  ( ph  ->  ( F : A --> B  /\  A  e.  V
) )
21 fex 5947 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
2322, 17jca 529 . . . . . . . . 9  |-  ( ph  ->  ( F  e.  _V  /\  .0.  e.  _V )
)
24 suppimacnv 6700 . . . . . . . . 9  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
2523, 24syl 16 . . . . . . . 8  |-  ( ph  ->  ( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
2625sseq1d 3380 . . . . . . 7  |-  ( ph  ->  ( ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) )  <->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) ) ) )
2719, 26mpbird 232 . . . . . 6  |-  ( ph  ->  ( F supp  .0.  )  C_  ( `' F "
( _V  \  {  .0.  } ) ) )
2814, 5, 17, 27gsumcllem 16379 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
2928oveq2d 6106 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( O  gsumg  ( k  e.  A  |->  .0.  ) ) )
3028oveq2d 6106 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
3113, 29, 303eqtr4d 2483 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
3231ex 434 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
33 simprl 750 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
34 nnuz 10892 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
3533, 34syl6eleq 2531 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
3614adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
37 ffn 5556 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  F  Fn  A )
38 dffn4 5623 . . . . . . . . . . . 12  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
3937, 38sylib 196 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
40 fof 5617 . . . . . . . . . . 11  |-  ( F : A -onto-> ran  F  ->  F : A --> ran  F
)
4136, 39, 403syl 20 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ran  F )
421adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
43 gsumzoppg.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  G
)
4443submacs 15488 . . . . . . . . . . . 12  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
45 acsmre 14586 . . . . . . . . . . . 12  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
4642, 44, 453syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (SubMnd `  G )  e.  (Moore `  B )
)
47 eqid 2441 . . . . . . . . . . 11  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
48 frn 5562 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  ran  F  C_  B )
4936, 48syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  B
)
5046, 47, 49mrcssidd 14559 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )
51 fss 5564 . . . . . . . . . 10  |-  ( ( F : A --> ran  F  /\  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  F : A --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
5241, 50, 51syl2anc 656 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )
53 f1of1 5637 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
5453ad2antll 723 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
55 cnvimass 5186 . . . . . . . . . . . 12  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
56 fdm 5560 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  dom  F  =  A )
5736, 56syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  dom  F  =  A )
5855, 57syl5sseq 3401 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
59 f1ss 5608 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
6054, 58, 59syl2anc 656 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
61 f1f 5603 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
6260, 61syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
63 fco 5565 . . . . . . . . 9  |-  ( ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )  -> 
( F  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
6452, 62, 63syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
6564ffvelrnda 5840 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  x )  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
6647mrccl 14545 . . . . . . . . . 10  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  ran  F  C_  B
)  ->  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  e.  (SubMnd `  G
) )
6746, 49, 66syl2anc 656 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  G )
)
682oppgsubm 15870 . . . . . . . . 9  |-  (SubMnd `  G )  =  (SubMnd `  O )
6967, 68syl6eleq 2531 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  O )
)
70 eqid 2441 . . . . . . . . . 10  |-  ( +g  `  O )  =  ( +g  `  O )
7170submcl 15476 . . . . . . . . 9  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
72713expb 1183 . . . . . . . 8  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  (
x  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
7369, 72sylan 468 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
74 gsumzoppg.c . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
7574adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
76 gsumzoppg.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
77 eqid 2441 . . . . . . . . . . . . . 14  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
7876, 47, 77cntzspan 16319 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  ran  F  C_  ( Z `  ran  F ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
7942, 75, 78syl2anc 656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
8077, 76submcmn2 16316 . . . . . . . . . . . . 13  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  e.  (SubMnd `  G )  ->  (
( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  e. CMnd  <->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
8167, 80syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) 
C_  ( Z `  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
8279, 81mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )
8382sselda 3353 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  ->  x  e.  ( Z `  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) ) )
84 eqid 2441 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
8584, 76cntzi 15840 . . . . . . . . . 10  |-  ( ( x  e.  ( Z `
 ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
8683, 85sylan 468 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
8784, 2, 70oppgplus 15857 . . . . . . . . 9  |-  ( x ( +g  `  O
) y )  =  ( y ( +g  `  G ) x )
8886, 87syl6reqr 2492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  O ) y )  =  ( x ( +g  `  G
) y ) )
8988anasss 642 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  =  ( x ( +g  `  G ) y ) )
9035, 65, 73, 89seqfeq4 11851 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
912, 43oppgbas 15859 . . . . . . 7  |-  B  =  ( Base `  O
)
92 eqid 2441 . . . . . . 7  |-  (Cntz `  O )  =  (Cntz `  O )
9342, 3syl 16 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  O  e.  Mnd )
945adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
952, 76oppgcntz 15872 . . . . . . . 8  |-  ( Z `
 ran  F )  =  ( (Cntz `  O ) `  ran  F )
9675, 95syl6sseq 3399 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(Cntz `  O ) `  ran  F ) )
97 suppssdm 6702 . . . . . . . . . . . . . . . 16  |-  ( F supp 
.0.  )  C_  dom  F
9897a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  .0.  )  C_ 
dom  F )
9925eqcomd 2446 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( F supp  .0.  )
)
10099sseq1d 3380 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  C_  dom  F  <->  ( F supp  .0.  )  C_  dom  F ) )
10198, 100mpbird 232 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  dom  F )
102101adantl 463 . . . . . . . . . . . . 13  |-  ( ( dom  F  =  A  /\  ph )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  dom  F )
103 eqcom 2443 . . . . . . . . . . . . . . . 16  |-  ( dom 
F  =  A  <->  A  =  dom  F )
104103biimpi 194 . . . . . . . . . . . . . . 15  |-  ( dom 
F  =  A  ->  A  =  dom  F )
105104adantr 462 . . . . . . . . . . . . . 14  |-  ( ( dom  F  =  A  /\  ph )  ->  A  =  dom  F )
106105sseq2d 3381 . . . . . . . . . . . . 13  |-  ( ( dom  F  =  A  /\  ph )  -> 
( ( `' F " ( _V  \  {  .0.  } ) )  C_  A 
<->  ( `' F "
( _V  \  {  .0.  } ) )  C_  dom  F ) )
107102, 106mpbird 232 . . . . . . . . . . . 12  |-  ( ( dom  F  =  A  /\  ph )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  A )
108107ex 434 . . . . . . . . . . 11  |-  ( dom 
F  =  A  -> 
( ph  ->  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
) )
10956, 108syl 16 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( ph  ->  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
) )
11014, 109mpcom 36 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  A )
111110adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
11254, 111, 59syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
11318a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
11426adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( F supp 
.0.  )  C_  ( `' F " ( _V 
\  {  .0.  }
) )  <->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) ) ) )
115113, 114mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) )
116 f1ofo 5645 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
117 forn 5620 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
118116, 117syl 16 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
119118sseq2d 3381 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  (
( F supp  .0.  )  C_ 
ran  f  <->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) ) )
120119ad2antll 723 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( F supp 
.0.  )  C_  ran  f 
<->  ( F supp  .0.  )  C_  ( `' F "
( _V  \  {  .0.  } ) ) ) )
121115, 120mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ran  f )
122 eqid 2441 . . . . . . 7  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
12391, 7, 70, 92, 93, 94, 36, 96, 33, 112, 121, 122gsumval3 16378 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
12427adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) )
125124, 120mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ran  f )
12643, 6, 84, 76, 42, 94, 36, 75, 33, 112, 125, 122gsumval3 16378 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
12790, 123, 1263eqtr4d 2483 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
128127expr 612 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
129128exlimdv 1695 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( O  gsumg  F )  =  ( G  gsumg  F ) ) )
130129expimpd 600 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
131 gsumzoppg.n . . . . 5  |-  ( ph  ->  F finSupp  .0.  )
132131fsuppimpd 7623 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
13325eleq1d 2507 . . . . . 6  |-  ( ph  ->  ( ( F supp  .0.  )  e.  Fin  <->  ( `' F " ( _V  \  {  .0.  } ) )  e.  Fin ) )
134133biimpd 207 . . . . 5  |-  ( ph  ->  ( ( F supp  .0.  )  e.  Fin  ->  ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin ) )
135134com12 31 . . . 4  |-  ( ( F supp  .0.  )  e.  Fin  ->  ( ph  ->  ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin ) )
136132, 135mpcom 36 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
137 fz1f1o 13183 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
138136, 137syl 16 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
13932, 130, 138mpjaod 381 1  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   _Vcvv 2970    \ cdif 3322    C_ wss 3325   (/)c0 3634   {csn 3874   class class class wbr 4289    e. cmpt 4347   `'ccnv 4835   dom cdm 4836   ran crn 4837   "cima 4839    o. ccom 4840    Fn wfn 5410   -->wf 5411   -1-1->wf1 5412   -onto->wfo 5413   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   supp csupp 6689   Fincfn 7306   finSupp cfsupp 7616   1c1 9279   NNcn 10318   ZZ>=cuz 10857   ...cfz 11433    seqcseq 11802   #chash 12099   Basecbs 14170   ↾s cress 14171   +g cplusg 14234   0gc0g 14374    gsumg cgsu 14375  Moorecmre 14516  mrClscmrc 14517  ACScacs 14519   Mndcmnd 15405  SubMndcsubmnd 15459  Cntzccntz 15826  oppgcoppg 15853  CMndccmn 16270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-gsum 14377  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-cntz 15828  df-oppg 15854  df-cmn 16272
This theorem is referenced by:  gsumzinv  16434
  Copyright terms: Public domain W3C validator