MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzmhm Structured version   Unicode version

Theorem gsumzmhm 16422
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzmhm.b  |-  B  =  ( Base `  G
)
gsumzmhm.z  |-  Z  =  (Cntz `  G )
gsumzmhm.g  |-  ( ph  ->  G  e.  Mnd )
gsumzmhm.h  |-  ( ph  ->  H  e.  Mnd )
gsumzmhm.a  |-  ( ph  ->  A  e.  V )
gsumzmhm.k  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
gsumzmhm.f  |-  ( ph  ->  F : A --> B )
gsumzmhm.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzmhm.0  |-  .0.  =  ( 0g `  G )
gsumzmhm.w  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsumzmhm  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumzmhm
Dummy variables  k  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzmhm.h . . . . . . 7  |-  ( ph  ->  H  e.  Mnd )
2 gsumzmhm.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
3 eqid 2441 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
43gsumz 15504 . . . . . . 7  |-  ( ( H  e.  Mnd  /\  A  e.  V )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
51, 2, 4syl2anc 656 . . . . . 6  |-  ( ph  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
65adantr 462 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
7 gsumzmhm.k . . . . . . 7  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
8 gsumzmhm.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
98, 3mhm0 15468 . . . . . . 7  |-  ( K  e.  ( G MndHom  H
)  ->  ( K `  .0.  )  =  ( 0g `  H ) )
107, 9syl 16 . . . . . 6  |-  ( ph  ->  ( K `  .0.  )  =  ( 0g `  H ) )
1110adantr 462 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K `  .0.  )  =  ( 0g `  H
) )
126, 11eqtr4d 2476 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( K `  .0.  ) )
13 gsumzmhm.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Mnd )
14 gsumzmhm.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
1514, 8mndidcl 15435 . . . . . . . . 9  |-  ( G  e.  Mnd  ->  .0.  e.  B )
1613, 15syl 16 . . . . . . . 8  |-  ( ph  ->  .0.  e.  B )
1716ad2antrr 720 . . . . . . 7  |-  ( ( ( ph  /\  ( `' F " ( _V 
\  {  .0.  }
) )  =  (/) )  /\  k  e.  A
)  ->  .0.  e.  B )
18 gsumzmhm.f . . . . . . . 8  |-  ( ph  ->  F : A --> B )
19 fvex 5698 . . . . . . . . . 10  |-  ( 0g
`  G )  e. 
_V
208, 19eqeltri 2511 . . . . . . . . 9  |-  .0.  e.  _V
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  .0.  e.  _V )
22 ssid 3372 . . . . . . . . . 10  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
2322a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
2418, 2jca 529 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F : A --> B  /\  A  e.  V
) )
25 fex 5947 . . . . . . . . . . . . 13  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
2624, 25syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  _V )
2726, 21jca 529 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  _V  /\  .0.  e.  _V )
)
28 suppimacnv 6700 . . . . . . . . . . 11  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
2927, 28syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
3029sseq1d 3380 . . . . . . . . 9  |-  ( ph  ->  ( ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) )  <->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) ) ) )
3123, 30mpbird 232 . . . . . . . 8  |-  ( ph  ->  ( F supp  .0.  )  C_  ( `' F "
( _V  \  {  .0.  } ) ) )
3218, 2, 21, 31gsumcllem 16379 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
33 eqid 2441 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
3414, 33mhmf 15465 . . . . . . . . . 10  |-  ( K  e.  ( G MndHom  H
)  ->  K : B
--> ( Base `  H
) )
357, 34syl 16 . . . . . . . . 9  |-  ( ph  ->  K : B --> ( Base `  H ) )
3635feqmptd 5741 . . . . . . . 8  |-  ( ph  ->  K  =  ( x  e.  B  |->  ( K `
 x ) ) )
3736adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  K  =  ( x  e.  B  |->  ( K `  x ) ) )
38 fveq2 5688 . . . . . . 7  |-  ( x  =  .0.  ->  ( K `  x )  =  ( K `  .0.  ) )
3917, 32, 37, 38fmptco 5873 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K  o.  F )  =  ( k  e.  A  |->  ( K `  .0.  ) ) )
4010mpteq2dv 4376 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  |->  ( K `  .0.  ) )  =  ( k  e.  A  |->  ( 0g `  H ) ) )
4140adantr 462 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  (
k  e.  A  |->  ( K `  .0.  )
)  =  ( k  e.  A  |->  ( 0g
`  H ) ) )
4239, 41eqtrd 2473 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K  o.  F )  =  ( k  e.  A  |->  ( 0g `  H ) ) )
4342oveq2d 6106 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) ) )
4432oveq2d 6106 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
458gsumz 15504 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
4613, 2, 45syl2anc 656 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
4746adantr 462 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
4844, 47eqtrd 2473 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  .0.  )
4948fveq2d 5692 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  .0.  )
)
5012, 43, 493eqtr4d 2483 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
5150ex 434 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) ) )
5213adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
53 eqid 2441 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
5414, 53mndcl 15416 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
55543expb 1183 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
5652, 55sylan 468 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  e.  B )
5718adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
58 f1of1 5637 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
5958ad2antll 723 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
60 cnvimass 5186 . . . . . . . . . . . 12  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
61 fdm 5560 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  dom  F  =  A )
6257, 61syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  dom  F  =  A )
6360, 62syl5sseq 3401 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
64 f1ss 5608 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
6559, 63, 64syl2anc 656 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
66 f1f 5603 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
6765, 66syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
68 fco 5565 . . . . . . . . 9  |-  ( ( F : A --> B  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> A )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> B )
6957, 67, 68syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> B )
7069ffvelrnda 5840 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  x )  e.  B )
71 simprl 750 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
72 nnuz 10892 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7371, 72syl6eleq 2531 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
747adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  K  e.  ( G MndHom  H ) )
75 eqid 2441 . . . . . . . . . 10  |-  ( +g  `  H )  =  ( +g  `  H )
7614, 53, 75mhmlin 15467 . . . . . . . . 9  |-  ( ( K  e.  ( G MndHom  H )  /\  x  e.  B  /\  y  e.  B )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
77763expb 1183 . . . . . . . 8  |-  ( ( K  e.  ( G MndHom  H )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( K `  ( x ( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H
) ( K `  y ) ) )
7874, 77sylan 468 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( K `  (
x ( +g  `  G
) y ) )  =  ( ( K `
 x ) ( +g  `  H ) ( K `  y
) ) )
79 coass 5353 . . . . . . . . 9  |-  ( ( K  o.  F )  o.  f )  =  ( K  o.  ( F  o.  f )
)
8079fveq1i 5689 . . . . . . . 8  |-  ( ( ( K  o.  F
)  o.  f ) `
 x )  =  ( ( K  o.  ( F  o.  f
) ) `  x
)
81 fvco3 5765 . . . . . . . . 9  |-  ( ( ( F  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> B  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( K  o.  ( F  o.  f )
) `  x )  =  ( K `  ( ( F  o.  f ) `  x
) ) )
8269, 81sylan 468 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( K  o.  ( F  o.  f )
) `  x )  =  ( K `  ( ( F  o.  f ) `  x
) ) )
8380, 82syl5req 2486 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  ( K `  ( ( F  o.  f ) `  x ) )  =  ( ( ( K  o.  F )  o.  f ) `  x
) )
8456, 70, 73, 78, 83seqhomo 11849 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  =  (  seq 1 ( ( +g  `  H ) ,  ( ( K  o.  F
)  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
85 gsumzmhm.z . . . . . . . 8  |-  Z  =  (Cntz `  G )
862adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
87 gsumzmhm.c . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
8887adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
8931adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) )
90 f1ofo 5645 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
91 forn 5620 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
9290, 91syl 16 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
9392ad2antll 723 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
9489, 93sseqtr4d 3390 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ran  f )
95 eqid 2441 . . . . . . . 8  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
9614, 8, 53, 85, 52, 86, 57, 88, 71, 65, 94, 95gsumval3 16378 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
9796fveq2d 5692 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) )
98 eqid 2441 . . . . . . 7  |-  (Cntz `  H )  =  (Cntz `  H )
991adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  H  e.  Mnd )
10035adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  K : B --> ( Base `  H )
)
101 fco 5565 . . . . . . . 8  |-  ( ( K : B --> ( Base `  H )  /\  F : A --> B )  -> 
( K  o.  F
) : A --> ( Base `  H ) )
102100, 57, 101syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K  o.  F ) : A --> ( Base `  H )
)
10385, 98cntzmhm2 15850 . . . . . . . . 9  |-  ( ( K  e.  ( G MndHom  H )  /\  ran  F 
C_  ( Z `  ran  F ) )  -> 
( K " ran  F )  C_  ( (Cntz `  H ) `  ( K " ran  F ) ) )
10474, 88, 103syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K " ran  F )  C_  (
(Cntz `  H ) `  ( K " ran  F ) ) )
105 rnco2 5342 . . . . . . . 8  |-  ran  ( K  o.  F )  =  ( K " ran  F )
106105fveq2i 5691 . . . . . . . 8  |-  ( (Cntz `  H ) `  ran  ( K  o.  F
) )  =  ( (Cntz `  H ) `  ( K " ran  F ) )
107104, 105, 1063sstr4g 3394 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  ( K  o.  F )  C_  (
(Cntz `  H ) `  ran  ( K  o.  F ) ) )
108 eldifi 3475 . . . . . . . . . . 11  |-  ( x  e.  ( A  \ 
( `' F "
( _V  \  {  .0.  } ) ) )  ->  x  e.  A
)
109 fvco3 5765 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( K  o.  F ) `  x
)  =  ( K `
 ( F `  x ) ) )
11057, 108, 109syl2an 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) `  x )  =  ( K `  ( F `
 x ) ) )
11120a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  .0.  e.  _V )
11257, 89, 86, 111suppssr 6719 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F `  x )  =  .0.  )
113112fveq2d 5692 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  ( F `  x ) )  =  ( K `
 .0.  ) )
11410ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  .0.  )  =  ( 0g `  H ) )
115110, 113, 1143eqtrd 2477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) `  x )  =  ( 0g `  H ) )
116102, 115suppss 6718 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) supp  ( 0g `  H ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) ) )
117116, 93sseqtr4d 3390 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) supp  ( 0g `  H ) ) 
C_  ran  f )
118 eqid 2441 . . . . . . 7  |-  ( ( ( K  o.  F
)  o.  f ) supp  ( 0g `  H
) )  =  ( ( ( K  o.  F )  o.  f
) supp  ( 0g `  H ) )
11933, 3, 75, 98, 99, 86, 102, 107, 71, 65, 117, 118gsumval3 16378 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  (  seq 1
( ( +g  `  H
) ,  ( ( K  o.  F )  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
12084, 97, 1193eqtr4rd 2484 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
121120expr 612 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) ) )
122121exlimdv 1695 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) ) )
123122expimpd 600 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) ) )
124 gsumzmhm.w . . . . 5  |-  ( ph  ->  F finSupp  .0.  )
125124fsuppimpd 7623 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
12629eleq1d 2507 . . . . . 6  |-  ( ph  ->  ( ( F supp  .0.  )  e.  Fin  <->  ( `' F " ( _V  \  {  .0.  } ) )  e.  Fin ) )
127126biimpd 207 . . . . 5  |-  ( ph  ->  ( ( F supp  .0.  )  e.  Fin  ->  ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin ) )
128127com12 31 . . . 4  |-  ( ( F supp  .0.  )  e.  Fin  ->  ( ph  ->  ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin ) )
129125, 128mpcom 36 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
130 fz1f1o 13183 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
131129, 130syl 16 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
13251, 123, 131mpjaod 381 1  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   _Vcvv 2970    \ cdif 3322    C_ wss 3325   (/)c0 3634   {csn 3874   class class class wbr 4289    e. cmpt 4347   `'ccnv 4835   dom cdm 4836   ran crn 4837   "cima 4839    o. ccom 4840   -->wf 5411   -1-1->wf1 5412   -onto->wfo 5413   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   supp csupp 6689   Fincfn 7306   finSupp cfsupp 7616   1c1 9279   NNcn 10318   ZZ>=cuz 10857   ...cfz 11433    seqcseq 11802   #chash 12099   Basecbs 14170   +g cplusg 14234   0gc0g 14374    gsumg cgsu 14375   Mndcmnd 15405   MndHom cmhm 15458  Cntzccntz 15826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-0g 14376  df-gsum 14377  df-mnd 15411  df-mhm 15460  df-cntz 15828
This theorem is referenced by:  gsummhm  16424  gsumzinv  16434
  Copyright terms: Public domain W3C validator