MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzmhm Structured version   Visualization version   Unicode version

Theorem gsumzmhm 17648
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzmhm.b  |-  B  =  ( Base `  G
)
gsumzmhm.z  |-  Z  =  (Cntz `  G )
gsumzmhm.g  |-  ( ph  ->  G  e.  Mnd )
gsumzmhm.h  |-  ( ph  ->  H  e.  Mnd )
gsumzmhm.a  |-  ( ph  ->  A  e.  V )
gsumzmhm.k  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
gsumzmhm.f  |-  ( ph  ->  F : A --> B )
gsumzmhm.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzmhm.0  |-  .0.  =  ( 0g `  G )
gsumzmhm.w  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsumzmhm  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumzmhm
Dummy variables  k  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzmhm.h . . . . . . 7  |-  ( ph  ->  H  e.  Mnd )
2 gsumzmhm.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
3 eqid 2471 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
43gsumz 16699 . . . . . . 7  |-  ( ( H  e.  Mnd  /\  A  e.  V )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
51, 2, 4syl2anc 673 . . . . . 6  |-  ( ph  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
65adantr 472 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
7 gsumzmhm.k . . . . . . 7  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
8 gsumzmhm.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
98, 3mhm0 16668 . . . . . . 7  |-  ( K  e.  ( G MndHom  H
)  ->  ( K `  .0.  )  =  ( 0g `  H ) )
107, 9syl 17 . . . . . 6  |-  ( ph  ->  ( K `  .0.  )  =  ( 0g `  H ) )
1110adantr 472 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K `  .0.  )  =  ( 0g `  H
) )
126, 11eqtr4d 2508 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( K `  .0.  ) )
13 gsumzmhm.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Mnd )
14 gsumzmhm.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
1514, 8mndidcl 16632 . . . . . . . . 9  |-  ( G  e.  Mnd  ->  .0.  e.  B )
1613, 15syl 17 . . . . . . . 8  |-  ( ph  ->  .0.  e.  B )
1716ad2antrr 740 . . . . . . 7  |-  ( ( ( ph  /\  ( `' F " ( _V 
\  {  .0.  }
) )  =  (/) )  /\  k  e.  A
)  ->  .0.  e.  B )
18 gsumzmhm.f . . . . . . . 8  |-  ( ph  ->  F : A --> B )
19 fvex 5889 . . . . . . . . . 10  |-  ( 0g
`  G )  e. 
_V
208, 19eqeltri 2545 . . . . . . . . 9  |-  .0.  e.  _V
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  .0.  e.  _V )
22 fex 6155 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
2318, 2, 22syl2anc 673 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
24 suppimacnv 6944 . . . . . . . . . 10  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
2523, 21, 24syl2anc 673 . . . . . . . . 9  |-  ( ph  ->  ( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
26 ssid 3437 . . . . . . . . 9  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
2725, 26syl6eqss 3468 . . . . . . . 8  |-  ( ph  ->  ( F supp  .0.  )  C_  ( `' F "
( _V  \  {  .0.  } ) ) )
2818, 2, 21, 27gsumcllem 17620 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
29 eqid 2471 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
3014, 29mhmf 16665 . . . . . . . . . 10  |-  ( K  e.  ( G MndHom  H
)  ->  K : B
--> ( Base `  H
) )
317, 30syl 17 . . . . . . . . 9  |-  ( ph  ->  K : B --> ( Base `  H ) )
3231feqmptd 5932 . . . . . . . 8  |-  ( ph  ->  K  =  ( x  e.  B  |->  ( K `
 x ) ) )
3332adantr 472 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  K  =  ( x  e.  B  |->  ( K `  x ) ) )
34 fveq2 5879 . . . . . . 7  |-  ( x  =  .0.  ->  ( K `  x )  =  ( K `  .0.  ) )
3517, 28, 33, 34fmptco 6072 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K  o.  F )  =  ( k  e.  A  |->  ( K `  .0.  ) ) )
3610mpteq2dv 4483 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  |->  ( K `  .0.  ) )  =  ( k  e.  A  |->  ( 0g `  H ) ) )
3736adantr 472 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  (
k  e.  A  |->  ( K `  .0.  )
)  =  ( k  e.  A  |->  ( 0g
`  H ) ) )
3835, 37eqtrd 2505 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K  o.  F )  =  ( k  e.  A  |->  ( 0g `  H ) ) )
3938oveq2d 6324 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) ) )
4028oveq2d 6324 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
418gsumz 16699 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
4213, 2, 41syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
4342adantr 472 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
4440, 43eqtrd 2505 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  .0.  )
4544fveq2d 5883 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  .0.  )
)
4612, 39, 453eqtr4d 2515 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
4746ex 441 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) ) )
4813adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
49 eqid 2471 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
5014, 49mndcl 16623 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
51503expb 1232 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
5248, 51sylan 479 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  e.  B )
5318adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
54 f1of1 5827 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
5554ad2antll 743 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
56 cnvimass 5194 . . . . . . . . . . . 12  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
57 fdm 5745 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  dom  F  =  A )
5853, 57syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  dom  F  =  A )
5956, 58syl5sseq 3466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
60 f1ss 5797 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
6155, 59, 60syl2anc 673 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
62 f1f 5792 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
6361, 62syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
64 fco 5751 . . . . . . . . 9  |-  ( ( F : A --> B  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> A )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> B )
6553, 63, 64syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> B )
6665ffvelrnda 6037 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  x )  e.  B )
67 simprl 772 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
68 nnuz 11218 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
6967, 68syl6eleq 2559 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
707adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  K  e.  ( G MndHom  H ) )
71 eqid 2471 . . . . . . . . . 10  |-  ( +g  `  H )  =  ( +g  `  H )
7214, 49, 71mhmlin 16667 . . . . . . . . 9  |-  ( ( K  e.  ( G MndHom  H )  /\  x  e.  B  /\  y  e.  B )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
73723expb 1232 . . . . . . . 8  |-  ( ( K  e.  ( G MndHom  H )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( K `  ( x ( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H
) ( K `  y ) ) )
7470, 73sylan 479 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( K `  (
x ( +g  `  G
) y ) )  =  ( ( K `
 x ) ( +g  `  H ) ( K `  y
) ) )
75 coass 5361 . . . . . . . . 9  |-  ( ( K  o.  F )  o.  f )  =  ( K  o.  ( F  o.  f )
)
7675fveq1i 5880 . . . . . . . 8  |-  ( ( ( K  o.  F
)  o.  f ) `
 x )  =  ( ( K  o.  ( F  o.  f
) ) `  x
)
77 fvco3 5957 . . . . . . . . 9  |-  ( ( ( F  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> B  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( K  o.  ( F  o.  f )
) `  x )  =  ( K `  ( ( F  o.  f ) `  x
) ) )
7865, 77sylan 479 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( K  o.  ( F  o.  f )
) `  x )  =  ( K `  ( ( F  o.  f ) `  x
) ) )
7976, 78syl5req 2518 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  ( K `  ( ( F  o.  f ) `  x ) )  =  ( ( ( K  o.  F )  o.  f ) `  x
) )
8052, 66, 69, 74, 79seqhomo 12298 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  =  (  seq 1 ( ( +g  `  H ) ,  ( ( K  o.  F
)  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
81 gsumzmhm.z . . . . . . . 8  |-  Z  =  (Cntz `  G )
822adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
83 gsumzmhm.c . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
8483adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
8527adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) )
86 f1ofo 5835 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
87 forn 5809 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
8886, 87syl 17 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
8988ad2antll 743 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
9085, 89sseqtr4d 3455 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ran  f )
91 eqid 2471 . . . . . . . 8  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
9214, 8, 49, 81, 48, 82, 53, 84, 67, 61, 90, 91gsumval3 17619 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
9392fveq2d 5883 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) )
94 eqid 2471 . . . . . . 7  |-  (Cntz `  H )  =  (Cntz `  H )
951adantr 472 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  H  e.  Mnd )
9631adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  K : B --> ( Base `  H )
)
97 fco 5751 . . . . . . . 8  |-  ( ( K : B --> ( Base `  H )  /\  F : A --> B )  -> 
( K  o.  F
) : A --> ( Base `  H ) )
9896, 53, 97syl2anc 673 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K  o.  F ) : A --> ( Base `  H )
)
9981, 94cntzmhm2 17071 . . . . . . . . 9  |-  ( ( K  e.  ( G MndHom  H )  /\  ran  F 
C_  ( Z `  ran  F ) )  -> 
( K " ran  F )  C_  ( (Cntz `  H ) `  ( K " ran  F ) ) )
10070, 84, 99syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K " ran  F )  C_  (
(Cntz `  H ) `  ( K " ran  F ) ) )
101 rnco2 5349 . . . . . . . 8  |-  ran  ( K  o.  F )  =  ( K " ran  F )
102101fveq2i 5882 . . . . . . . 8  |-  ( (Cntz `  H ) `  ran  ( K  o.  F
) )  =  ( (Cntz `  H ) `  ( K " ran  F ) )
103100, 101, 1023sstr4g 3459 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  ( K  o.  F )  C_  (
(Cntz `  H ) `  ran  ( K  o.  F ) ) )
104 eldifi 3544 . . . . . . . . . . 11  |-  ( x  e.  ( A  \ 
( `' F "
( _V  \  {  .0.  } ) ) )  ->  x  e.  A
)
105 fvco3 5957 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( K  o.  F ) `  x
)  =  ( K `
 ( F `  x ) ) )
10653, 104, 105syl2an 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) `  x )  =  ( K `  ( F `
 x ) ) )
10720a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  .0.  e.  _V )
10853, 85, 82, 107suppssr 6965 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F `  x )  =  .0.  )
109108fveq2d 5883 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  ( F `  x ) )  =  ( K `
 .0.  ) )
11010ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  .0.  )  =  ( 0g `  H ) )
111106, 109, 1103eqtrd 2509 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) `  x )  =  ( 0g `  H ) )
11298, 111suppss 6964 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) supp  ( 0g `  H ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) ) )
113112, 89sseqtr4d 3455 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) supp  ( 0g `  H ) ) 
C_  ran  f )
114 eqid 2471 . . . . . . 7  |-  ( ( ( K  o.  F
)  o.  f ) supp  ( 0g `  H
) )  =  ( ( ( K  o.  F )  o.  f
) supp  ( 0g `  H ) )
11529, 3, 71, 94, 95, 82, 98, 103, 67, 61, 113, 114gsumval3 17619 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  (  seq 1
( ( +g  `  H
) ,  ( ( K  o.  F )  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
11680, 93, 1153eqtr4rd 2516 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
117116expr 626 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) ) )
118117exlimdv 1787 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) ) )
119118expimpd 614 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) ) )
120 gsumzmhm.w . . . . 5  |-  ( ph  ->  F finSupp  .0.  )
121120fsuppimpd 7908 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
12225, 121eqeltrrd 2550 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
123 fz1f1o 13853 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
124122, 123syl 17 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
12547, 119, 124mpjaod 388 1  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 375    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   _Vcvv 3031    \ cdif 3387    C_ wss 3390   (/)c0 3722   {csn 3959   class class class wbr 4395    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842    o. ccom 4843   -->wf 5585   -1-1->wf1 5586   -onto->wfo 5587   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   supp csupp 6933   Fincfn 7587   finSupp cfsupp 7901   1c1 9558   NNcn 10631   ZZ>=cuz 11182   ...cfz 11810    seqcseq 12251   #chash 12553   Basecbs 15199   +g cplusg 15268   0gc0g 15416    gsumg cgsu 15417   Mndcmnd 16613   MndHom cmhm 16658  Cntzccntz 17047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-seq 12252  df-hash 12554  df-0g 15418  df-gsum 15419  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-cntz 17049
This theorem is referenced by:  gsummhm  17649  gsumzinv  17656
  Copyright terms: Public domain W3C validator