MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzinvOLD Structured version   Unicode version

Theorem gsumzinvOLD 17171
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) Obsolete version of gsumzinv 17170 as of 6-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumzinvOLD.b  |-  B  =  ( Base `  G
)
gsumzinvOLD.0  |-  .0.  =  ( 0g `  G )
gsumzinvOLD.z  |-  Z  =  (Cntz `  G )
gsumzinvOLD.p  |-  I  =  ( invg `  G )
gsumzinvOLD.g  |-  ( ph  ->  G  e.  Grp )
gsumzinvOLD.a  |-  ( ph  ->  A  e.  V )
gsumzinvOLD.f  |-  ( ph  ->  F : A --> B )
gsumzinvOLD.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzinvOLD.n  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsumzinvOLD  |-  ( ph  ->  ( G  gsumg  ( I  o.  F
) )  =  ( I `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumzinvOLD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 gsumzinvOLD.b . . 3  |-  B  =  ( Base `  G
)
2 gsumzinvOLD.0 . . 3  |-  .0.  =  ( 0g `  G )
3 gsumzinvOLD.z . . 3  |-  Z  =  (Cntz `  G )
4 eqid 2454 . . 3  |-  (oppg `  G
)  =  (oppg `  G
)
5 gsumzinvOLD.g . . . 4  |-  ( ph  ->  G  e.  Grp )
6 grpmnd 16264 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
75, 6syl 16 . . 3  |-  ( ph  ->  G  e.  Mnd )
8 gsumzinvOLD.a . . 3  |-  ( ph  ->  A  e.  V )
9 gsumzinvOLD.p . . . . . 6  |-  I  =  ( invg `  G )
101, 9grpinvf 16296 . . . . 5  |-  ( G  e.  Grp  ->  I : B --> B )
115, 10syl 16 . . . 4  |-  ( ph  ->  I : B --> B )
12 gsumzinvOLD.f . . . 4  |-  ( ph  ->  F : A --> B )
13 fco 5723 . . . 4  |-  ( ( I : B --> B  /\  F : A --> B )  ->  ( I  o.  F ) : A --> B )
1411, 12, 13syl2anc 659 . . 3  |-  ( ph  ->  ( I  o.  F
) : A --> B )
154, 9invoppggim 16597 . . . . . 6  |-  ( G  e.  Grp  ->  I  e.  ( G GrpIso  (oppg `  G
) ) )
16 gimghm 16514 . . . . . 6  |-  ( I  e.  ( G GrpIso  (oppg `  G
) )  ->  I  e.  ( G  GrpHom  (oppg `  G
) ) )
17 ghmmhm 16479 . . . . . 6  |-  ( I  e.  ( G  GrpHom  (oppg `  G ) )  ->  I  e.  ( G MndHom  (oppg `  G ) ) )
185, 15, 16, 174syl 21 . . . . 5  |-  ( ph  ->  I  e.  ( G MndHom 
(oppg `  G ) ) )
19 gsumzinvOLD.c . . . . 5  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
20 eqid 2454 . . . . . 6  |-  (Cntz `  (oppg `  G ) )  =  (Cntz `  (oppg
`  G ) )
213, 20cntzmhm2 16579 . . . . 5  |-  ( ( I  e.  ( G MndHom 
(oppg `  G ) )  /\  ran  F  C_  ( Z `  ran  F ) )  ->  ( I " ran  F )  C_  (
(Cntz `  (oppg
`  G ) ) `
 ( I " ran  F ) ) )
2218, 19, 21syl2anc 659 . . . 4  |-  ( ph  ->  ( I " ran  F )  C_  ( (Cntz `  (oppg
`  G ) ) `
 ( I " ran  F ) ) )
23 rnco2 5497 . . . 4  |-  ran  (
I  o.  F )  =  ( I " ran  F )
2423fveq2i 5851 . . . . 5  |-  ( Z `
 ran  ( I  o.  F ) )  =  ( Z `  (
I " ran  F
) )
254, 3oppgcntz 16601 . . . . 5  |-  ( Z `
 ( I " ran  F ) )  =  ( (Cntz `  (oppg `  G
) ) `  (
I " ran  F
) )
2624, 25eqtri 2483 . . . 4  |-  ( Z `
 ran  ( I  o.  F ) )  =  ( (Cntz `  (oppg `  G
) ) `  (
I " ran  F
) )
2722, 23, 263sstr4g 3530 . . 3  |-  ( ph  ->  ran  ( I  o.  F )  C_  ( Z `  ran  ( I  o.  F ) ) )
28 gsumzinvOLD.n . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
29 eldifi 3612 . . . . . . 7  |-  ( x  e.  ( A  \ 
( `' F "
( _V  \  {  .0.  } ) ) )  ->  x  e.  A
)
30 fvco3 5925 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( I  o.  F ) `  x
)  =  ( I `
 ( F `  x ) ) )
3112, 29, 30syl2an 475 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( I  o.  F ) `  x )  =  ( I `  ( F `
 x ) ) )
32 ssid 3508 . . . . . . . . 9  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
3332a1i 11 . . . . . . . 8  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
3412, 33suppssrOLD 5997 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F `  x )  =  .0.  )
3534fveq2d 5852 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( I `  ( F `  x ) )  =  ( I `
 .0.  ) )
362, 9grpinvid 16303 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
I `  .0.  )  =  .0.  )
375, 36syl 16 . . . . . . 7  |-  ( ph  ->  ( I `  .0.  )  =  .0.  )
3837adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( I `  .0.  )  =  .0.  )
3931, 35, 383eqtrd 2499 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( I  o.  F ) `  x )  =  .0.  )
4014, 39suppssOLD 5996 . . . 4  |-  ( ph  ->  ( `' ( I  o.  F ) "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
41 ssfi 7733 . . . 4  |-  ( ( ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( I  o.  F
) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )  -> 
( `' ( I  o.  F ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
4228, 40, 41syl2anc 659 . . 3  |-  ( ph  ->  ( `' ( I  o.  F ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
431, 2, 3, 4, 7, 8, 14, 27, 42gsumzoppgOLD 17169 . 2  |-  ( ph  ->  ( (oppg
`  G )  gsumg  ( I  o.  F ) )  =  ( G  gsumg  ( I  o.  F ) ) )
444oppgmnd 16591 . . . 4  |-  ( G  e.  Mnd  ->  (oppg `  G
)  e.  Mnd )
457, 44syl 16 . . 3  |-  ( ph  ->  (oppg
`  G )  e. 
Mnd )
461, 3, 7, 45, 8, 18, 12, 19, 2, 28gsumzmhmOLD 17159 . 2  |-  ( ph  ->  ( (oppg
`  G )  gsumg  ( I  o.  F ) )  =  ( I `  ( G  gsumg  F ) ) )
4743, 46eqtr3d 2497 1  |-  ( ph  ->  ( G  gsumg  ( I  o.  F
) )  =  ( I `  ( G 
gsumg  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106    \ cdif 3458    C_ wss 3461   {csn 4016   `'ccnv 4987   ran crn 4989   "cima 4991    o. ccom 4992   -->wf 5566   ` cfv 5570  (class class class)co 6270   Fincfn 7509   Basecbs 14719   0gc0g 14932    gsumg cgsu 14933   Mndcmnd 16121   MndHom cmhm 16166   Grpcgrp 16255   invgcminusg 16256    GrpHom cghm 16466   GrpIso cgim 16507  Cntzccntz 16555  oppgcoppg 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12093  df-hash 12391  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-0g 14934  df-gsum 14935  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-mhm 16168  df-submnd 16169  df-grp 16259  df-minusg 16260  df-ghm 16467  df-gim 16509  df-cntz 16557  df-oppg 16583  df-cmn 17002
This theorem is referenced by:  dprdfinvOLD  17264
  Copyright terms: Public domain W3C validator