MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzf1o Structured version   Unicode version

Theorem gsumzf1o 16732
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b  |-  B  =  ( Base `  G
)
gsumzcl.0  |-  .0.  =  ( 0g `  G )
gsumzcl.z  |-  Z  =  (Cntz `  G )
gsumzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumzcl.a  |-  ( ph  ->  A  e.  V )
gsumzcl.f  |-  ( ph  ->  F : A --> B )
gsumzcl.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzcl.w  |-  ( ph  ->  F finSupp  .0.  )
gsumzf1o.h  |-  ( ph  ->  H : C -1-1-onto-> A )
Assertion
Ref Expression
gsumzf1o  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )

Proof of Theorem gsumzf1o
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
2 gsumzcl.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
3 gsumzcl.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
43gsumz 15836 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
51, 2, 4syl2anc 661 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
6 gsumzf1o.h . . . . . . . . 9  |-  ( ph  ->  H : C -1-1-onto-> A )
7 f1of1 5815 . . . . . . . . 9  |-  ( H : C -1-1-onto-> A  ->  H : C -1-1-> A )
86, 7syl 16 . . . . . . . 8  |-  ( ph  ->  H : C -1-1-> A
)
9 f1dmex 6755 . . . . . . . 8  |-  ( ( H : C -1-1-> A  /\  A  e.  V
)  ->  C  e.  _V )
108, 2, 9syl2anc 661 . . . . . . 7  |-  ( ph  ->  C  e.  _V )
113gsumz 15836 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  C  e.  _V )  ->  ( G  gsumg  ( x  e.  C  |->  .0.  ) )  =  .0.  )
121, 10, 11syl2anc 661 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( x  e.  C  |->  .0.  ) )  =  .0.  )
135, 12eqtr4d 2511 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
1413adantr 465 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
15 gsumzcl.f . . . . . 6  |-  ( ph  ->  F : A --> B )
16 fvex 5876 . . . . . . . 8  |-  ( 0g
`  G )  e. 
_V
173, 16eqeltri 2551 . . . . . . 7  |-  .0.  e.  _V
1817a1i 11 . . . . . 6  |-  ( ph  ->  .0.  e.  _V )
19 ssid 3523 . . . . . . 7  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
2019a1i 11 . . . . . 6  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
2115, 2, 18, 20gsumcllem 16727 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  )
)
2221oveq2d 6301 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
23 f1of 5816 . . . . . . . . 9  |-  ( H : C -1-1-onto-> A  ->  H : C
--> A )
246, 23syl 16 . . . . . . . 8  |-  ( ph  ->  H : C --> A )
2524adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  H : C --> A )
2625ffvelrnda 6022 . . . . . 6  |-  ( ( ( ph  /\  ( F supp  .0.  )  =  (/) )  /\  x  e.  C
)  ->  ( H `  x )  e.  A
)
2725feqmptd 5921 . . . . . 6  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  H  =  ( x  e.  C  |->  ( H `
 x ) ) )
28 eqidd 2468 . . . . . 6  |-  ( k  =  ( H `  x )  ->  .0.  =  .0.  )
2926, 27, 21, 28fmptco 6055 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  o.  H
)  =  ( x  e.  C  |->  .0.  )
)
3029oveq2d 6301 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( F  o.  H
) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
3114, 22, 303eqtr4d 2518 . . 3  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
3231ex 434 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
33 coass 5526 . . . . . . . . . . 11  |-  ( ( H  o.  `' H
)  o.  f )  =  ( H  o.  ( `' H  o.  f
) )
346adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  H : C
-1-1-onto-> A )
35 f1ococnv2 5842 . . . . . . . . . . . . . 14  |-  ( H : C -1-1-onto-> A  ->  ( H  o.  `' H )  =  (  _I  |`  A )
)
3634, 35syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( H  o.  `' H )  =  (  _I  |`  A )
)
3736coeq1d 5164 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( H  o.  `' H
)  o.  f )  =  ( (  _I  |`  A )  o.  f
) )
38 f1of1 5815 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )
)
3938ad2antll 728 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> ( F supp  .0.  ) )
40 suppssdm 6915 . . . . . . . . . . . . . . . 16  |-  ( F supp 
.0.  )  C_  dom  F
41 fdm 5735 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> B  ->  dom  F  =  A )
4215, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  F  =  A )
4340, 42syl5sseq 3552 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  .0.  )  C_  A )
4443adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  A )
45 f1ss 5786 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )  /\  ( F supp  .0.  )  C_  A )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A )
4639, 44, 45syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> A
)
47 f1f 5781 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) --> A )
48 fcoi2 5760 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) --> A  ->  ( (  _I  |`  A )  o.  f )  =  f )
4946, 47, 483syl 20 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( (  _I  |`  A )  o.  f )  =  f )
5037, 49eqtrd 2508 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( H  o.  `' H
)  o.  f )  =  f )
5133, 50syl5reqr 2523 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f  =  ( H  o.  ( `' H  o.  f
) ) )
5251coeq2d 5165 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  o.  f )  =  ( F  o.  ( H  o.  ( `' H  o.  f ) ) ) )
53 coass 5526 . . . . . . . . 9  |-  ( ( F  o.  H )  o.  ( `' H  o.  f ) )  =  ( F  o.  ( H  o.  ( `' H  o.  f )
) )
5452, 53syl6eqr 2526 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  o.  f )  =  ( ( F  o.  H
)  o.  ( `' H  o.  f ) ) )
5554seqeq3d 12084 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) )  =  seq 1 ( ( +g  `  G
) ,  ( ( F  o.  H )  o.  ( `' H  o.  f ) ) ) )
5655fveq1d 5868 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) )  =  (  seq 1 ( ( +g  `  G ) ,  ( ( F  o.  H )  o.  ( `' H  o.  f ) ) ) `
 ( # `  ( F supp  .0.  ) ) ) )
57 gsumzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
58 eqid 2467 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
59 gsumzcl.z . . . . . . 7  |-  Z  =  (Cntz `  G )
601adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  G  e.  Mnd )
612adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  A  e.  V )
6215adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  F : A
--> B )
63 gsumzcl.c . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
6463adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  F  C_  ( Z `  ran  F
) )
65 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( # `  ( F supp  .0.  ) )  e.  NN )
66 f1ofo 5823 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )
)
67 forn 5798 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp  .0.  ) )
6866, 67syl 16 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp 
.0.  ) )
6968ad2antll 728 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  f  =  ( F supp  .0.  )
)
7019, 69syl5sseqr 3553 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ran  f )
71 eqid 2467 . . . . . . 7  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
7257, 3, 58, 59, 60, 61, 62, 64, 65, 46, 70, 71gsumval3 16726 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) ) )
7310adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  C  e.  _V )
74 fco 5741 . . . . . . . . 9  |-  ( ( F : A --> B  /\  H : C --> A )  ->  ( F  o.  H ) : C --> B )
7515, 24, 74syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( F  o.  H
) : C --> B )
7675adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  o.  H ) : C --> B )
77 rncoss 5263 . . . . . . . . 9  |-  ran  ( F  o.  H )  C_ 
ran  F
7859cntzidss 16189 . . . . . . . . 9  |-  ( ( ran  F  C_  ( Z `  ran  F )  /\  ran  ( F  o.  H )  C_  ran  F )  ->  ran  ( F  o.  H
)  C_  ( Z `  ran  ( F  o.  H ) ) )
7963, 77, 78sylancl 662 . . . . . . . 8  |-  ( ph  ->  ran  ( F  o.  H )  C_  ( Z `  ran  ( F  o.  H ) ) )
8079adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  ( F  o.  H )  C_  ( Z `  ran  ( F  o.  H )
) )
81 f1ocnv 5828 . . . . . . . . . 10  |-  ( H : C -1-1-onto-> A  ->  `' H : A -1-1-onto-> C )
82 f1of1 5815 . . . . . . . . . 10  |-  ( `' H : A -1-1-onto-> C  ->  `' H : A -1-1-> C
)
836, 81, 823syl 20 . . . . . . . . 9  |-  ( ph  ->  `' H : A -1-1-> C
)
8483adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  `' H : A -1-1-> C )
85 f1co 5790 . . . . . . . 8  |-  ( ( `' H : A -1-1-> C  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A )  ->  ( `' H  o.  f
) : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> C )
8684, 46, 85syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' H  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> C )
8719a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ( F supp  .0.  ) )
88 fex 6134 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
8915, 2, 88syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  _V )
90 suppimacnv 6913 . . . . . . . . . . . . . 14  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
9189, 17, 90sylancl 662 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
9291eqcomd 2475 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( F supp  .0.  )
)
9392adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' F " ( _V  \  {  .0.  } ) )  =  ( F supp  .0.  ) )
9487, 93, 693sstr4d 3547 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  ran  f )
95 imass2 5372 . . . . . . . . . 10  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  ran  f  ->  ( `' H " ( `' F "
( _V  \  {  .0.  } ) ) ) 
C_  ( `' H " ran  f ) )
9694, 95syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' H " ( `' F " ( _V  \  {  .0.  } ) ) ) 
C_  ( `' H " ran  f ) )
97 cnvco 5188 . . . . . . . . . . 11  |-  `' ( F  o.  H )  =  ( `' H  o.  `' F )
9897imaeq1i 5334 . . . . . . . . . 10  |-  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  =  ( ( `' H  o.  `' F ) " ( _V  \  {  .0.  }
) )
99 imaco 5512 . . . . . . . . . 10  |-  ( ( `' H  o.  `' F ) " ( _V  \  {  .0.  }
) )  =  ( `' H " ( `' F " ( _V 
\  {  .0.  }
) ) )
10098, 99eqtri 2496 . . . . . . . . 9  |-  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  =  ( `' H " ( `' F " ( _V 
\  {  .0.  }
) ) )
101 rnco2 5514 . . . . . . . . 9  |-  ran  ( `' H  o.  f
)  =  ( `' H " ran  f
)
10296, 100, 1013sstr4g 3545 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  C_  ran  ( `' H  o.  f
) )
103 f1oexrnex 6734 . . . . . . . . . . . . 13  |-  ( ( H : C -1-1-onto-> A  /\  A  e.  V )  ->  H  e.  _V )
1046, 2, 103syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  _V )
105 coexg 6736 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( F  o.  H
)  e.  _V )
10689, 104, 105syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( F  o.  H
)  e.  _V )
107 suppimacnv 6913 . . . . . . . . . . 11  |-  ( ( ( F  o.  H
)  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  o.  H ) supp  .0.  )  =  ( `' ( F  o.  H )
" ( _V  \  {  .0.  } ) ) )
108106, 17, 107sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  o.  H ) supp  .0.  )  =  ( `' ( F  o.  H )
" ( _V  \  {  .0.  } ) ) )
109108sseq1d 3531 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F  o.  H ) supp  .0.  )  C_  ran  ( `' H  o.  f )  <-> 
( `' ( F  o.  H ) "
( _V  \  {  .0.  } ) )  C_  ran  ( `' H  o.  f ) ) )
110109adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( (
( F  o.  H
) supp  .0.  )  C_  ran  ( `' H  o.  f )  <->  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  C_  ran  ( `' H  o.  f
) ) )
111102, 110mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( F  o.  H ) supp  .0.  )  C_  ran  ( `' H  o.  f
) )
112 eqid 2467 . . . . . . 7  |-  ( ( ( F  o.  H
)  o.  ( `' H  o.  f ) ) supp  .0.  )  =  ( ( ( F  o.  H )  o.  ( `' H  o.  f ) ) supp  .0.  )
11357, 3, 58, 59, 60, 73, 76, 80, 65, 86, 111, 112gsumval3 16726 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  ( F  o.  H ) )  =  (  seq 1 ( ( +g  `  G ) ,  ( ( F  o.  H
)  o.  ( `' H  o.  f ) ) ) `  ( # `
 ( F supp  .0.  ) ) ) )
11456, 72, 1133eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( F  o.  H
) ) )
115114expr 615 . . . 4  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
116115exlimdv 1700 . . 3  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
117116expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  ( F supp  .0.  )
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
)  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( F  o.  H
) ) ) )
118 gsumzcl.w . . 3  |-  ( ph  ->  F finSupp  .0.  )
119 fsuppimp 7836 . . . 4  |-  ( F finSupp  .0.  ->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin ) )
120119simprd 463 . . 3  |-  ( F finSupp  .0.  ->  ( F supp  .0.  )  e.  Fin )
121 fz1f1o 13498 . . 3  |-  ( ( F supp  .0.  )  e.  Fin  ->  ( ( F supp 
.0.  )  =  (/)  \/  ( ( # `  ( F supp  .0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
122118, 120, 1213syl 20 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  \/  (
( # `  ( F supp 
.0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
12332, 117, 122mpjaod 381 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3113    \ cdif 3473    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447    |-> cmpt 4505    _I cid 4790   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002    o. ccom 5003   Fun wfun 5582   -->wf 5584   -1-1->wf1 5585   -onto->wfo 5586   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6285   supp csupp 6902   Fincfn 7517   finSupp cfsupp 7830   1c1 9494   NNcn 10537   ...cfz 11673    seqcseq 12076   #chash 12374   Basecbs 14493   +g cplusg 14558   0gc0g 14698    gsumg cgsu 14699   Mndcmnd 15729  Cntzccntz 16167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6903  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-fsupp 7831  df-oi 7936  df-card 8321  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11084  df-fz 11674  df-fzo 11794  df-seq 12077  df-hash 12375  df-0g 14700  df-gsum 14701  df-mnd 15735  df-cntz 16169
This theorem is referenced by:  gsumf1o  16739  smadiadetlem3  18977
  Copyright terms: Public domain W3C validator