MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzclOLD Structured version   Unicode version

Theorem gsumzclOLD 17118
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) Obsolete version of gsumzcl 17115 as of 1-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumzclOLD.b  |-  B  =  ( Base `  G
)
gsumzclOLD.0  |-  .0.  =  ( 0g `  G )
gsumzclOLD.z  |-  Z  =  (Cntz `  G )
gsumzclOLD.g  |-  ( ph  ->  G  e.  Mnd )
gsumzclOLD.a  |-  ( ph  ->  A  e.  V )
gsumzclOLD.f  |-  ( ph  ->  F : A --> B )
gsumzclOLD.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzclOLD.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsumzclOLD  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)

Proof of Theorem gsumzclOLD
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzclOLD.f . . . . . . 7  |-  ( ph  ->  F : A --> B )
2 ssid 3508 . . . . . . . 8  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
32a1i 11 . . . . . . 7  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
41, 3gsumcllemOLD 17112 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
54oveq2d 6286 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
6 gsumzclOLD.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
7 gsumzclOLD.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
8 gsumzclOLD.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
98gsumz 16204 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
106, 7, 9syl2anc 659 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
1110adantr 463 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
125, 11eqtrd 2495 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  .0.  )
13 gsumzclOLD.b . . . . . . 7  |-  B  =  ( Base `  G
)
1413, 8mndidcl 16137 . . . . . 6  |-  ( G  e.  Mnd  ->  .0.  e.  B )
156, 14syl 16 . . . . 5  |-  ( ph  ->  .0.  e.  B )
1615adantr 463 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  .0.  e.  B )
1712, 16eqeltrd 2542 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  e.  B
)
1817ex 432 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( G  gsumg  F )  e.  B ) )
19 eqid 2454 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
20 gsumzclOLD.z . . . . . . 7  |-  Z  =  (Cntz `  G )
216adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
227adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
231adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
24 gsumzclOLD.c . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
2524adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
26 simprl 754 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
27 f1of1 5797 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
2827ad2antll 726 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
29 cnvimass 5345 . . . . . . . . . 10  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
30 fdm 5717 . . . . . . . . . . 11  |-  ( F : A --> B  ->  dom  F  =  A )
311, 30syl 16 . . . . . . . . . 10  |-  ( ph  ->  dom  F  =  A )
3229, 31syl5sseq 3537 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  A )
3332adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
34 f1ss 5768 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
3528, 33, 34syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
36 f1ofo 5805 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
37 forn 5780 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
3836, 37syl 16 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
3938ad2antll 726 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
402, 39syl5sseqr 3538 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ran  f )
41 eqid 2454 . . . . . . 7  |-  ( `' ( F  o.  f
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  o.  f ) " ( _V  \  {  .0.  }
) )
4213, 8, 19, 20, 21, 22, 23, 25, 26, 35, 40, 41gsumval3OLD 17107 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
43 nnuz 11117 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4426, 43syl6eleq 2552 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
45 f1f 5763 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
4635, 45syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
47 fco 5723 . . . . . . . . 9  |-  ( ( F : A --> B  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> A )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> B )
4823, 46, 47syl2anc 659 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> B )
4948ffvelrnda 6007 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  k  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  k )  e.  B )
5013, 19mndcl 16128 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  k  e.  B  /\  x  e.  B )  ->  ( k ( +g  `  G ) x )  e.  B )
51503expb 1195 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( k  e.  B  /\  x  e.  B
) )  ->  (
k ( +g  `  G
) x )  e.  B )
5221, 51sylan 469 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( k  e.  B  /\  x  e.  B ) )  -> 
( k ( +g  `  G ) x )  e.  B )
5344, 49, 52seqcl 12109 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  e.  B )
5442, 53eqeltrd 2542 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  e.  B )
5554expr 613 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( G  gsumg  F )  e.  B
) )
5655exlimdv 1729 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( G  gsumg  F )  e.  B
) )
5756expimpd 601 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( G  gsumg  F )  e.  B ) )
58 gsumzclOLD.w . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
59 fz1f1o 13614 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
6058, 59syl 16 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
6118, 57, 60mpjaod 379 1  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   _Vcvv 3106    \ cdif 3458    C_ wss 3461   (/)c0 3783   {csn 4016    |-> cmpt 4497   `'ccnv 4987   dom cdm 4988   ran crn 4989   "cima 4991    o. ccom 4992   -->wf 5566   -1-1->wf1 5567   -onto->wfo 5568   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270   Fincfn 7509   1c1 9482   NNcn 10531   ZZ>=cuz 11082   ...cfz 11675    seqcseq 12089   #chash 12387   Basecbs 14716   +g cplusg 14784   0gc0g 14929    gsumg cgsu 14930   Mndcmnd 16118  Cntzccntz 16552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-0g 14931  df-gsum 14932  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-cntz 16554
This theorem is referenced by:  gsumclOLD  17125  gsumzsubmclOLD  17128  dprdfaddOLD  17262
  Copyright terms: Public domain W3C validator