MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzaddOLD Structured version   Unicode version

Theorem gsumzaddOLD 17259
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) Obsolete version of gsumzadd 17257 as of 5-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumzaddOLD.b  |-  B  =  ( Base `  G
)
gsumzaddOLD.0  |-  .0.  =  ( 0g `  G )
gsumzaddOLD.p  |-  .+  =  ( +g  `  G )
gsumzaddOLD.z  |-  Z  =  (Cntz `  G )
gsumzaddOLD.g  |-  ( ph  ->  G  e.  Mnd )
gsumzaddOLD.a  |-  ( ph  ->  A  e.  V )
gsumzaddOLD.fn  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzaddOLD.hn  |-  ( ph  ->  ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzaddOLD.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumzaddOLD.c  |-  ( ph  ->  S  C_  ( Z `  S ) )
gsumzaddOLD.f  |-  ( ph  ->  F : A --> S )
gsumzaddOLD.h  |-  ( ph  ->  H : A --> S )
Assertion
Ref Expression
gsumzaddOLD  |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )

Proof of Theorem gsumzaddOLD
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzaddOLD.b . 2  |-  B  =  ( Base `  G
)
2 gsumzaddOLD.0 . 2  |-  .0.  =  ( 0g `  G )
3 gsumzaddOLD.p . 2  |-  .+  =  ( +g  `  G )
4 gsumzaddOLD.z . 2  |-  Z  =  (Cntz `  G )
5 gsumzaddOLD.g . 2  |-  ( ph  ->  G  e.  Mnd )
6 gsumzaddOLD.a . 2  |-  ( ph  ->  A  e.  V )
7 gsumzaddOLD.fn . 2  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
8 gsumzaddOLD.hn . 2  |-  ( ph  ->  ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
9 eqid 2402 . 2  |-  ( `' ( F  u.  H
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  u.  H ) " ( _V  \  {  .0.  }
) )
10 gsumzaddOLD.f . . 3  |-  ( ph  ->  F : A --> S )
11 gsumzaddOLD.s . . . 4  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
121submss 16303 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  B
)
1311, 12syl 17 . . 3  |-  ( ph  ->  S  C_  B )
14 fss 5721 . . 3  |-  ( ( F : A --> S  /\  S  C_  B )  ->  F : A --> B )
1510, 13, 14syl2anc 659 . 2  |-  ( ph  ->  F : A --> B )
16 gsumzaddOLD.h . . 3  |-  ( ph  ->  H : A --> S )
17 fss 5721 . . 3  |-  ( ( H : A --> S  /\  S  C_  B )  ->  H : A --> B )
1816, 13, 17syl2anc 659 . 2  |-  ( ph  ->  H : A --> B )
19 gsumzaddOLD.c . . 3  |-  ( ph  ->  S  C_  ( Z `  S ) )
20 frn 5719 . . . 4  |-  ( F : A --> S  ->  ran  F  C_  S )
2110, 20syl 17 . . 3  |-  ( ph  ->  ran  F  C_  S
)
224cntzidss 16697 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  F 
C_  S )  ->  ran  F  C_  ( Z `  ran  F ) )
2319, 21, 22syl2anc 659 . 2  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
24 frn 5719 . . . 4  |-  ( H : A --> S  ->  ran  H  C_  S )
2516, 24syl 17 . . 3  |-  ( ph  ->  ran  H  C_  S
)
264cntzidss 16697 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  H 
C_  S )  ->  ran  H  C_  ( Z `  ran  H ) )
2719, 25, 26syl2anc 659 . 2  |-  ( ph  ->  ran  H  C_  ( Z `  ran  H ) )
283submcl 16306 . . . . . . 7  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .+  y )  e.  S )
29283expb 1198 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
3011, 29sylan 469 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
31 inidm 3647 . . . . 5  |-  ( A  i^i  A )  =  A
3230, 10, 16, 6, 6, 31off 6535 . . . 4  |-  ( ph  ->  ( F  oF  .+  H ) : A --> S )
33 frn 5719 . . . 4  |-  ( ( F  oF  .+  H ) : A --> S  ->  ran  ( F  oF  .+  H ) 
C_  S )
3432, 33syl 17 . . 3  |-  ( ph  ->  ran  ( F  oF  .+  H )  C_  S )
354cntzidss 16697 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  ( F  oF  .+  H )  C_  S
)  ->  ran  ( F  oF  .+  H
)  C_  ( Z `  ran  ( F  oF  .+  H ) ) )
3619, 34, 35syl2anc 659 . 2  |-  ( ph  ->  ran  ( F  oF  .+  H )  C_  ( Z `  ran  ( F  oF  .+  H
) ) )
3719adantr 463 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  S ) )
3813adantr 463 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  B )
395adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  G  e.  Mnd )
40 vex 3061 . . . . . . . 8  |-  x  e. 
_V
4140a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  x  e.  _V )
4211adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  e.  (SubMnd `  G
) )
43 simpl 455 . . . . . . . 8  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  ->  x  C_  A )
44 fssres 5733 . . . . . . . 8  |-  ( ( H : A --> S  /\  x  C_  A )  -> 
( H  |`  x
) : x --> S )
4516, 43, 44syl2an 475 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( H  |`  x
) : x --> S )
4627adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  H  C_  ( Z `  ran  H ) )
47 resss 5116 . . . . . . . . 9  |-  ( H  |`  x )  C_  H
48 rnss 5051 . . . . . . . . 9  |-  ( ( H  |`  x )  C_  H  ->  ran  ( H  |`  x )  C_  ran  H )
4947, 48ax-mp 5 . . . . . . . 8  |-  ran  ( H  |`  x )  C_  ran  H
504cntzidss 16697 . . . . . . . 8  |-  ( ( ran  H  C_  ( Z `  ran  H )  /\  ran  ( H  |`  x )  C_  ran  H )  ->  ran  ( H  |`  x )  C_  ( Z `  ran  ( H  |`  x ) ) )
5146, 49, 50sylancl 660 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  ( H  |`  x
)  C_  ( Z `  ran  ( H  |`  x ) ) )
528adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
53 cnvss 4995 . . . . . . . . 9  |-  ( ( H  |`  x )  C_  H  ->  `' ( H  |`  x )  C_  `' H )
54 imass1 5190 . . . . . . . . 9  |-  ( `' ( H  |`  x
)  C_  `' H  ->  ( `' ( H  |`  x ) " ( _V  \  {  .0.  }
) )  C_  ( `' H " ( _V 
\  {  .0.  }
) ) )
5547, 53, 54mp2b 10 . . . . . . . 8  |-  ( `' ( H  |`  x
) " ( _V 
\  {  .0.  }
) )  C_  ( `' H " ( _V 
\  {  .0.  }
) )
56 ssfi 7774 . . . . . . . 8  |-  ( ( ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( H  |`  x )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' H " ( _V  \  {  .0.  } ) ) )  ->  ( `' ( H  |`  x ) " ( _V  \  {  .0.  } ) )  e.  Fin )
5752, 55, 56sylancl 660 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( `' ( H  |`  x ) " ( _V  \  {  .0.  }
) )  e.  Fin )
582, 4, 39, 41, 42, 45, 51, 57gsumzsubmclOLD 17251 . . . . . 6  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( G  gsumg  ( H  |`  x
) )  e.  S
)
5958snssd 4116 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  { ( G  gsumg  ( H  |`  x ) ) } 
C_  S )
601, 4cntz2ss 16692 . . . . 5  |-  ( ( S  C_  B  /\  { ( G  gsumg  ( H  |`  x
) ) }  C_  S )  ->  ( Z `  S )  C_  ( Z `  {
( G  gsumg  ( H  |`  x
) ) } ) )
6138, 59, 60syl2anc 659 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( Z `  S
)  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
6237, 61sstrd 3451 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
63 eldifi 3564 . . . . 5  |-  ( k  e.  ( A  \  x )  ->  k  e.  A )
6463adantl 464 . . . 4  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  -> 
k  e.  A )
65 ffvelrn 6006 . . . 4  |-  ( ( F : A --> S  /\  k  e.  A )  ->  ( F `  k
)  e.  S )
6610, 64, 65syl2an 475 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  S )
6762, 66sseldd 3442 . 2  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  ( Z `
 { ( G 
gsumg  ( H  |`  x ) ) } ) )
681, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 23, 27, 36, 67gsumzaddlemOLD 17258 1  |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3058    \ cdif 3410    u. cun 3411    C_ wss 3413   {csn 3971   `'ccnv 4821   ran crn 4823    |` cres 4824   "cima 4825   -->wf 5564   ` cfv 5568  (class class class)co 6277    oFcof 6518   Fincfn 7553   Basecbs 14839   +g cplusg 14907   0gc0g 15052    gsumg cgsu 15053   Mndcmnd 16241  SubMndcsubmnd 16287  Cntzccntz 16675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-oi 7968  df-card 8351  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-fzo 11853  df-seq 12150  df-hash 12451  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-0g 15054  df-gsum 15055  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-cntz 16677
This theorem is referenced by:  gsumaddOLD  17261  gsumzsplitOLD  17267
  Copyright terms: Public domain W3C validator