MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxpOLD Structured version   Unicode version

Theorem gsumxpOLD 16797
Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) Obsolete version of gsumxp 16795 as of 9-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumxpOLD.b  |-  B  =  ( Base `  G
)
gsumxpOLD.z  |-  .0.  =  ( 0g `  G )
gsumxpOLD.g  |-  ( ph  ->  G  e. CMnd )
gsumxpOLD.a  |-  ( ph  ->  A  e.  V )
gsumxpOLD.r  |-  ( ph  ->  C  e.  W )
gsumxpOLD.f  |-  ( ph  ->  F : ( A  X.  C ) --> B )
gsumxpOLD.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsumxpOLD  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) ) )
Distinct variable groups:    j, k,  .0.    j, G, k    ph, j,
k    A, j, k    B, j, k    C, j, k   
j, F, k    j, V
Allowed substitution hints:    V( k)    W( j, k)

Proof of Theorem gsumxpOLD
StepHypRef Expression
1 gsumxpOLD.b . . 3  |-  B  =  ( Base `  G
)
2 gsumxpOLD.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumxpOLD.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsumxpOLD.a . . . 4  |-  ( ph  ->  A  e.  V )
5 gsumxpOLD.r . . . 4  |-  ( ph  ->  C  e.  W )
6 xpexg 6709 . . . 4  |-  ( ( A  e.  V  /\  C  e.  W )  ->  ( A  X.  C
)  e.  _V )
74, 5, 6syl2anc 661 . . 3  |-  ( ph  ->  ( A  X.  C
)  e.  _V )
8 relxp 5108 . . . 4  |-  Rel  ( A  X.  C )
98a1i 11 . . 3  |-  ( ph  ->  Rel  ( A  X.  C ) )
10 dmxpss 5436 . . . 4  |-  dom  ( A  X.  C )  C_  A
1110a1i 11 . . 3  |-  ( ph  ->  dom  ( A  X.  C )  C_  A
)
12 gsumxpOLD.f . . 3  |-  ( ph  ->  F : ( A  X.  C ) --> B )
13 gsumxpOLD.w . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
141, 2, 3, 7, 9, 4, 11, 12, 13gsum2dOLD 16791 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) ) ) ) )
15 df-ima 5012 . . . . . . 7  |-  ( ( A  X.  C )
" { j } )  =  ran  (
( A  X.  C
)  |`  { j } )
16 df-res 5011 . . . . . . . . . . 11  |-  ( ( A  X.  C )  |`  { j } )  =  ( ( A  X.  C )  i^i  ( { j }  X.  _V ) )
17 inxp 5133 . . . . . . . . . . 11  |-  ( ( A  X.  C )  i^i  ( { j }  X.  _V )
)  =  ( ( A  i^i  { j } )  X.  ( C  i^i  _V ) )
1816, 17eqtri 2496 . . . . . . . . . 10  |-  ( ( A  X.  C )  |`  { j } )  =  ( ( A  i^i  { j } )  X.  ( C  i^i  _V ) )
19 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  A )  ->  j  e.  A )
2019snssd 4172 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  { j }  C_  A )
21 sseqin2 3717 . . . . . . . . . . . 12  |-  ( { j }  C_  A  <->  ( A  i^i  { j } )  =  {
j } )
2220, 21sylib 196 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  ( A  i^i  { j } )  =  { j } )
23 inv1 3812 . . . . . . . . . . . 12  |-  ( C  i^i  _V )  =  C
2423a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  ( C  i^i  _V )  =  C )
2522, 24xpeq12d 5024 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
( A  i^i  {
j } )  X.  ( C  i^i  _V ) )  =  ( { j }  X.  C ) )
2618, 25syl5eq 2520 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
( A  X.  C
)  |`  { j } )  =  ( { j }  X.  C
) )
2726rneqd 5228 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( ( A  X.  C )  |`  { j } )  =  ran  ( { j }  X.  C ) )
28 vex 3116 . . . . . . . . . 10  |-  j  e. 
_V
2928snnz 4145 . . . . . . . . 9  |-  { j }  =/=  (/)
30 rnxp 5435 . . . . . . . . 9  |-  ( { j }  =/=  (/)  ->  ran  ( { j }  X.  C )  =  C )
3129, 30ax-mp 5 . . . . . . . 8  |-  ran  ( { j }  X.  C )  =  C
3227, 31syl6eq 2524 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( ( A  X.  C )  |`  { j } )  =  C )
3315, 32syl5eq 2520 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  (
( A  X.  C
) " { j } )  =  C )
3433mpteq1d 4528 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  (
k  e.  ( ( A  X.  C )
" { j } )  |->  ( j F k ) )  =  ( k  e.  C  |->  ( j F k ) ) )
3534oveq2d 6298 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( k  e.  C  |->  ( j F k ) ) ) )
3635mpteq2dva 4533 . . 3  |-  ( ph  ->  ( j  e.  A  |->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) )
3736oveq2d 6298 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) ) )
3814, 37eqtrd 2508 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113    \ cdif 3473    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   Rel wrel 5004   -->wf 5582   ` cfv 5586  (class class class)co 6282   Fincfn 7513   Basecbs 14486   0gc0g 14691    gsumg cgsu 14692  CMndccmn 16594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12072  df-hash 12370  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-0g 14693  df-gsum 14694  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator